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Abstract

We use option prices to derive bounds on the probability of a crash in an individ-

ual stock, and argue that the lower bound should be close to the truth. Empirically,

the lower bound is highly statistically and economically significant; on its own, it

outperforms 15 stock characteristics proposed by the prior literature combined. In

a multivariate regression, a one standard deviation increase in the bound raises the

predicted crash probability by 3 percentage points, whereas a one standard deviation

increase in the next most important predictor (a measure of short interest) raises

the predicted probability by only 0.3 percentage points.
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In this paper, we propose a new way of estimating the probability of a crash in an

individual stock. Our approach performs well in and out of sample, and outperforms a

LASSO-based competitor that exploits characteristics that have been proposed as crash

forecasters in the prior literature. As our forecasts are based solely on asset prices—

namely, the prices of options on the stock in question, and of options on a broad stock

index—they are, in principle, available in real time.

Aside from its intrinsic interest for investors and policymakers, forecasting crashes

represents an interesting theoretical challenge for two reasons. First, there is an obvious

and widely used competitor for our approach, namely, the risk-neutral probability of a

crash, which can be calculated from asset prices without any assumptions other than the

absence of arbitrage. And yet it is natural to worry that the risk-neutral probabilities,

which put more weight on bad states of the world, may overstate the true probabilities of

crashes.

Second, any attempt to forecast crashes in individual stocks using option prices seems

to run into the problem that the inferred crash probability ought to reflect the correlation

structure: the conclusions one would draw from a fixed set of prices should depend strongly

on whether the stock in question has, for example, a positive or negative beta. But the

prices of options on individual stocks and on the market reveal information only about

the marginal risk-neutral distributions of those stocks and of the market, and not about

their joint distribution.

We address these issues in two steps. To connect risk-neutral and true probabilities,

we take the perspective of a myopic investor with power utility who chooses to invest his

or her wealth fully in the S&P 500 index, which we treat as a proxy for “the market.”1

This implies that the stochastic discount factor (SDF) is proportional to a power of the

return on the S&P 500 index. In the special case in which risk aversion equals zero, the

predictive variable reduces to the risk-neutral probability of a crash, which can be inferred

from out-of-the-money put option prices, following Breeden and Litzenberger (1978): this

is a widely used indicator of crash probabilities but, as we will show, allowing for positive

risk aversion improves predictive performance.

1Related approaches have been adopted in the context of the stock market (Martin, 2017; Chabi-
Yo and Loudis, 2020; Martin, 2021; Gao and Martin, 2021; Gandhi, Gormsen, and Lazarus, 2022),
individual stocks (Martin and Wagner, 2019; Kadan and Tang, 2020; Chabi-Yo, Dim, and Vilkov, 2023),
and currencies (Kremens and Martin, 2019; Della Corte, Gao, and Jeanneret, 2023).
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Evidently, the power utility assumption is restrictive. In an ideal world we would

allow the SDF to depend on broader measures of wealth and potentially other state

variables. But option prices on the S&P 500 and on individual stocks are observable;

and they are forward-looking. The great strength of our approach is that it allows us

to avoid the alternative undesirable assumption, commonly made in the literature, that

backward-looking historical measures are good proxies for the forward-looking measures

that come out of theory. The empirical success of our approach suggests that the price of

our assumption is worth paying.

Having made the assumption, it is straightforward to infer the true distribution of

market returns from the risk-neutral distribution of market returns, as in Martin (2017).

To calculate the true distribution of a given stock’s returns, however, we would need to

observe the joint risk-neutral distribution of that stock’s and the market’s returns. The

problem is that observable option prices only allow us to infer the individual (that is,

marginal) risk-neutral distributions of the stock and of the market, without giving us any

control on the correlation structure.

This is the central challenge confronted by this paper. We handle it by exploiting the

theory of copulas, and, more specifically, the Fréchet–Hoeffding bounds. These allow us

to derive upper and lower bounds on the true probabilities of a crash that apply, under

our maintained assumption on the form of the SDF, for any correlation structure. As the

bounds fully exploit information in the two marginal distributions, they are tighter than

naive bounds that exploit the fact that correlation must lie between plus and minus one.

(This paper might more accurately be titled “Forecasting Crashes with Two Smiles.”)

We calculate bounds on the probability of declines of at least 5%, 10% or 20% over

the next one, three, six, and twelve months. We pay particular attention to the case of

a 20% decline over one month, which corresponds most closely to the notion of a crash,

but for convenience we refer to declines of all three sizes, over each horizon, as “crashes”.

The bounds demonstrate significant variation across firms and over time. Figure 1

illustrates by plotting upper and lower bounds on the probability of a crash of at least

20% over a one-month horizon for Apple and AIG. Figure 2 plots the time-series of the

cross-sectional median of the upper and lower bounds on crash probabilities, together with

the probability of a crash in the market (with the latter calculated based on the approach

in Martin (2017)). The market crash probability tends to be lower and less volatile than
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Figure 1: Bounds on forward-looking probabilities of a crash (one month return less
than −20%) for Apple and AIG.

the individual stock probabilities.

As we will show, the lower bound is tight if the stock’s return is a monotonic—and

potentially nonlinear—increasing function of the market return, while the upper bound

is tight if the stock’s return is a monotonic decreasing function of the market return. The

former case is more plausible, so we expect, of the two bounds, the lower bound to be a

better measure of the true crash probability.

To assess this prediction, we regress realized crash indicators onto the upper bound

and onto the lower bound. We consider crashes of size 5%, 10%, and 20% over horizons

of one, three, six, and 12 months, and find that both bounds are statistically significant

predictors of crashes at all horizons and for all crash sizes. The same is true for the

risk-neutral probability of a crash (which we show must always lie between the upper and

lower bounds).

If the lower bound were a perfect measure of the crash probability, we would find an

intercept equal to zero and slope coefficient equal to one in the associated regression. And

indeed we do find, for all 12 horizon/crash-size pairs, intercepts that are not significantly

different from zero and slope coefficients that are significantly positive and close to one.

The lower bound also outperforms the upper bound and the risk-neutral probability in

an R2 sense for 11 of the 12 horizon/crash-size pairs, the single exception being the one-
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Figure 2: Time series of cross-sectional medians of upper and lower bounds on crash
probabilities; and the crash probability of the S&P 500 index.

year/5% pair.

The lower bound remains significant when we include fifteen stock characteristics that

the prior literature has found useful in accounting for stock return variation, forecasting

crashes, or predicting bankruptcies: CAPM beta, firm size, the book-to-market ratio,

gross profits divided by total assets, three measures of trailing returns, realized volatil-

ity of market-adjusted returns, turnover, one-year sales growth, short interest scaled by

institutional ownership, leverage, net income to assets, cash to assets, and log price per

share. At horizons of one month and one quarter, the lower bound on its own achieves a

higher R2 than all fifteen stock characteristics do together.

We also test the validity and tightness of our bounds for stock crash probabilities,

following the approach of Back, Crotty, and Kazempour (2022). At all horizons and for

all crash sizes, we do not reject the null that the bounds are valid (that is, the lower

bounds are smaller and upper bounds are larger than the true crash probabilities). As

expected, we strongly reject the hypothesis that the upper bound is tight (with p-values

on the null hypothesis of tightness that never exceed 0.02 at any horizon or crash size),

while the evidence is mixed on whether the lower bound is tight: we do not reject tightness

at the one-month and one-year horizons, but at the three-month and six-month horizons

we can reject tightness (with p-values between 0.02 and 0.06).
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We conclude by comparing the out-of-sample predictive performance of the lower

bound with the other stock characteristics. We split the dataset into a training and

a testing sample and combine the stock characteristics via linear and logistic regressions,

using a LASSO approach (Tibshirani, 1996) to select models through cross-validation in

the training sample. The lower bound outperforms the resulting predictor at all horizons.

Related Literature. A large literature proposes methods to recover risk-neutral return

densities from option prices. An incomplete list includes Breeden and Litzenberger (1978);

Rubinstein (1994); Jackwerth and Rubinstein (1996); Aït-Sahalia and Lo (1998); Carr and

Madan (2001). Christoffersen, Jacobs, and Chang (2013) provide a survey. While the

starting point of our derivation relies on the insights of Breeden and Litzenberger (1978),

the major challenge of bounding the physical, as opposed to risk-neutral, expectations is

addressed by the new approach introduced in this paper.

Our work builds on a variety of papers that have studied the predictability of crashes.

Bates (1991) presents evidence that put option prices helped to forecast the stock market

crash of 1987. Chen, Hong, and Stein (2001) show that characteristics such as turnover

and past returns forecast negative return skewness in individual stocks. Greenwood,

Shleifer, and You (2019) use characteristics to forecast crashes at the industry level con-

ditional on observing past price surge. Daniel, Klos, and Rottke (2023) document that

price run-ups combined with high short interest and low institutional ownership forecast

lower stock returns. Goetzmann, Kim, and Shiller (2022) find that “crash narratives”

forecast future VIX levels, though not future market returns. There is also a literature

that focuses on how measures of downside, skewness, and tail-risk are priced in the cross

section of stock returns (see, for example, Ang, Chen, and Xing (2006); Boyer, Mitton,

and Vorkink (2009); Vilkov and Xiao (2013); Kelly and Jiang (2014); Pederzoli (2021)).

Elsewhere in the economics literature, the Fréchet–Hoeffding inequalities have been

applied by Heckman, Smith, and Clements (1997) in the context of programme evaluation.

The rest of this paper is organized as follows. Section 1 introduces our methodological

approach and establishes various theoretical properties of the bounds. Section 2 provides

details of our data sample. Section 3 presents our empirical results. Section 4 generalizes

the approach. Section 5 concludes. All proofs are in the Appendix.
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1 Theory

We adopt the perspective of an investor (“the investor”) with power utility over next-

period wealth who is marginal in all markets, including option markets, but who chooses

to invest her wealth fully in the market, by which we mean the S&P 500 index. At time t,

the investor chooses portfolio weights w = [w1, . . . , wn]
> to solve the problem2

maximize
w

E
[
u
(
w>R

)]
s.t.

n∑
i=1

wi = 1,

where u(x) = x1−γ/(1−γ), risk aversion equals γ, and we write R = [R1, . . . , Rn]
> for the

vector of gross returns on the n assets from time t to time t+1. The first-order conditions

for this problem are

E
[(
w>R

)−γ
Ri

]
= λ for all i,

where λ is a Lagrange multiplier. By assumption, the investor chooses to invest fully in

the market, thus the market return, Rm, satisfies Rm = w>R. It follows thatM = R−γm /λ

is a stochastic discount factor (SDF).

For any tradable payoff X, the risk-neutral expectation of X (which we denote with

an asterisk) satisfies, by definition,

1

Rf

E∗[X] = E[MX]

where Rf is the gross risk-free rate: the two sides of the above equation represent different

notational conventions for expressing the price at time t of a claim to the payoff X paid

at time t+ 1. As MλRγ
m ≡ 1, it follows that

E[X] = E[MλRγ
mX] = λE[M(Rγ

mX)] =
λ

Rf

E∗[Rγ
mX] . (1)

Setting X = 1 in this equation, we must have Rf = λE∗[Rγ
m]; using this fact to eliminate

λ from equation (1), we have

E[X] =
E∗[Rγ

mX]

E∗[Rγ
m]

. (2)

2All expectations are conditional on current, time t, information. We suppress time subscripts to
streamline the notation.
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Hence we can infer the investor’s expectation of X if we can price a claim to Rγ
mX.

For the rest of the paper we will assume that the payoff X = h(Ri) is a well-behaved

function of the return on a particular asset i, where h : R+ 7→ R is continuous almost

everywhere. We will denote by Qmi the joint risk-neutral cumulative distribution function

(CDF) of the market and individual stock return (Rm, Ri), and by Qm and Qi the corre-

sponding marginal CDFs of Rm and Ri individually. Equation (2) can then be rewritten

E[h(Ri)] =

∫
xγh(y) dQmi(x, y)∫

xγ dQm(x)
. (3)

For example, if X = I(Ri ≤ q) is the indicator function for the event that stock i’s gross

return is less than q, then equation (2) implies that

P[Ri ≤ q] =
E∗[Rγ

mI(Ri ≤ q)]

E∗[Rγ
m]

, (4)

because P[Ri ≤ q] = E[I(Ri ≤ q)]. Equation (4) shows that we can in principle infer

the true probability distribution of a particular stock return, as perceived by the power

utility investor who is holding the market, from risk-neutral distributions.

The challenge, however, is that while index options and individual stock options re-

veal risk-neutral expectations of univariate functions of index or stock returns, they do

not reveal risk-neutral expectations of two- (or higher-) dimensional functions of index

and stock returns simultaneously, as would be needed to calculate the numerators in (3)

or (4).3 Options on the market and on large-cap individual stocks are liquid, but because

they are written on a single underlying asset they reveal only the marginal risk-neutral

distributions, and not the correlation structure. To recover the risk-neutral joint distri-

bution, one would need to observe the prices of derivatives whose payoffs are functions

both of the stock index and of the stock of interest. But such prices are not observable

in practice. (By contrast the probability of a crash in the market itself, as plotted in

Figure 2, is relatively easy to handle: when i = m the right-hand side of (4) is a ratio

of risk-neutral expectations of functions of the single random variable Rm, which can be

calculated from index option prices in the usual way.)

3Ross (1976) showed in a finite-state setting that options on portfolios of assets could in principle be
used to recover risk-neutral joint densities. Martin (2018) points out that this result fails with continuous
states, and even with finite states given the assets that are traded in practice.
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We can, nonetheless, derive bounds on the right-hand sides of (3) or (4). To do

so, it is convenient to decompose the joint distribution into two parts: the marginals

and the dependence structure. The marginals can be inferred from index and stock

options, using the Breeden–Litzenberger approach. Roughly speaking, we can then bound

the integral in the numerator of (3) by minimizing and maximizing over all possible

dependence structures—more precisely, over all copulas.

Definition 1. A (two-dimensional) copula is a function C : [0, 1]2 7→ [0, 1] with the

following properties:

1. C is grounded: C(x, 0) = C(0, y) = 0 for any (x, y) in its domain;
2. C(x, 1) = x and C(1, y) = y for any (x, y) in its domain;
3. C is two-increasing: for all rectangles B = [x1, y1] × [x2, y2] ⊂ [0, 1]2, the “volume”

of B, which is defined by VH(B) = C(x2, y2) − C(x2, y1) − C(x1, y2) + C(x1, y1) is

non-negative.

The following theorem of Sklar (1959) shows that any joint distribution can be asso-

ciated with a copula that “glues together” its two marginals.

Theorem 1 (Sklar). Let Q be the joint CDF for the random vector (X, Y ) with marginal

CDFs FX and FY . Then there exists a copula C, such that for all x, y ∈ R,

Q(x, y) = C(FX(x), FY (y)).

We can therefore express the joint risk-neutral distribution of the market and stock

return as Qmi(x, y) = C(Qm(x), Qi(y)), where the risk-neutral index and individual stock

CDFs, Qm and Qi, can be calculated from index and individual stock option prices.

Although C(·, ·) is unknown, the following theorem supplies pointwise bounds that apply

to any copula.

Theorem 2 (Fréchet–Hoeffding). If C(u, v) is a copula, then

max(u+ v − 1, 0) ≤ C(u, v) ≤ min(u, v), (u, v) ∈ [0, 1]2.

Using this theorem, together with work of Tchen (1980), we have the following result,

whose proof is in the Appendix.

8



Result 1. For a continuous and two-increasing4 function g defined on [0,∞) × [0,∞),

we have the bounds

E∗
[
g
(
Rm, Q

−1
i (1−Qm(Rm))

)]
≤ E∗[g(Rm, Ri)] ≤ E∗

[
g
(
Rm, Q

−1
i (Qm(Rm))

)]
. (5)

Result 1 provides bounds on the price of an asset whose payoff g(Rm, Ri) can depend

in an arbitrary way on the correlation structure of Rm and Ri. As the one-dimensional

risk-neutral distributions are observable from index and individual stock option prices,

we can treat Qi and Qm as observable functions. Thus the upper and lower bounds in

(5) are risk-neutral expectations of known functions of the single variable Rm. They can

therefore be calculated given observable index option prices.

Result 1 exhibits bounds that relate risk-neutral expectations of different random

variables to one another. It does not rely on any assumptions about the form of the SDF.

But, under our assumption on the power utility form of the SDF, we can set g(x, y) =

xγh(y), as in equation (3), to derive the following result.

Result 2. Let h be a continuous increasing function defined on [0,∞) that does not cross

the x-axis (that is, h(x)h(y) ≥ 0 for any x, y ≥ 0), and suppose the SDF is proportional

to R−γm . Then

E∗
[
Rγ
mh
(
Q−1
i (1−Qm(Rm))

)]
E∗ [Rγ

m]
≤ E[h(Ri)] ≤

E∗
[
Rγ
mh
(
Q−1
i (Qm(Rm))

)]
E∗ [Rγ

m]
.

These bounds are sharp, in the sense that the lower bound is achieved if the return on the

stock and return on the market are countermonotonic, and the upper bound is achieved if

the return on the stock and return on the market are comonotonic.5

Note that the middle expectation above is a true—not a risk-neutral—expectation. In

our application to crash probabilities, we set h(x) = −I(x ≤ q) in Result 2. This delivers

the following special case of Result 2 on which our empirical work is based.

4See Definition 1.
5Two random variables are said to be countermonotonic if one is a monotonically decreasing trans-

formation of the other, and comonotonic if one is a monotonically increasing transformation of the other.
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Result 3. The probability of a crash in stock i, P[Ri ≤ q], satisfies the bounds

E∗ [Rγ
mI (Rm ≤ ql)]

E∗ [Rγ
m]

≤ P [Ri ≤ q] ≤ E∗ [Rγ
mI (Rm ≥ qu)]

E∗ [Rγ
m]

,

where ql = Q−1
m (Qi(q)) and qu = Q−1

m (1−Qi(q)).

The lower bound is attained if the return on the stock and return on the market are

comonotonic. The upper bound is attained if the two returns are countermonotonic.

The risk-neutral probability of a crash, P∗[Ri ≤ q], lies between the two bounds.

As most stocks typically move with, rather than against, the market, we anticipate

that comonotonicity is closer to the truth than countermonotonicity. Hence, a priori,

we expect the lower bound to be tighter—closer to the true crash probability—than the

upper bound. Our empirical results in Section 3.1 support this intuition, showing that

the lower bounds do indeed track the forward-looking crash probabilities better in the

panel of S&P 500 stocks.

Our next result shows that the bounds widen as risk aversion rises.

Result 4. The lower bound is decreasing in γ and the upper bound is increasing in γ.

When γ = 0, the lower and the upper bounds are both equal to P∗[Ri ≤ q]: this is the

case in which the true and risk-neutral expectations coincide, so that crash probabilities

can be inferred perfectly from option prices.

As γ → ∞, the bounds become trivial: for any q such that 0 < Qi(q) < 1, the lower

bound tends to 0 and the upper bound tends to 1.

It follows that higher risk aversion leads to more conservative bounds: increasing risk

aversion drives the lower bound down and the upper bound up.

It only remains to show how we calculate the bounds that appear in Result 3. Given a

chosen value of q, and hence of ql and qu, the risk-neutral expectations that appear in the

bounds can be calculated from index option prices. The only point at which the prices

of options on stock i itself are used is, therefore, in the calculation of ql and qu, which

are determined by the prices of index and of individual stock options via the risk-neutral

marginals Qm(·) and Qi(·).
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Result 5. For any γ > 0, we can calculate the risk-neutral expectations in Result 3 using

observable option prices:

E∗ [Rγ
m] = Rγ

f +
Rf

Sγ0

[∫ F

0

γ(γ − 1)Kγ−2put(K) dK +

∫ ∞
F

γ(γ − 1)Kγ−2call(K) dK

]
,

E∗ [Rγ
mI (Rm ≤ ql)] = Rfq

γ
l

[
put′(Kl)− γ

put (Kl)

Kl

]
+
Rf

Sγ0

∫ Kl

0

γ(γ − 1)Kγ−2put (K) dK,

E∗ [Rγ
mI (Rm ≥ qu)] = Rfq

γ
u

[
γ
call(Ku)

Ku

− call′(Ku)

]
+
Rf

Sγ0

∫ ∞
Ku

γ(γ − 1)Kγ−2call (K) dK,

where S0 is the spot price of the market index; F = RfS0 is the forward price; put(K)

and call(K) are the prices of index put and call options; and Kl = qlS0 and Ku = quS0.

1.1 Fréchet–Hoeffding vs. Cauchy–Schwarz

The bounds in Result 3 are stronger than the bounds that follow from the fact that

correlation lies between plus and minus one (that is, from the Cauchy–Schwarz inequality).

To compare the two approaches, rewrite equation (4) as

P [Ri ≤ q] = P∗ [Ri ≤ q] +
cov∗ [Rγ

m, I(Ri ≤ q)]

E∗ [Rγ
m]

.

As correlation must lie between plus and minus one, it follows that

P∗ [Ri ≤ q]− σ∗ [Rγ
m]σ

∗ [I(Ri ≤ q)]

E∗ [Rγ
m]

≤ P [Ri ≤ q] ≤ P∗ [Ri ≤ q] +
σ∗ [Rγ

m]σ
∗ [I(Ri ≤ q)]

E∗ [Rγ
m]

,

(6)

where σ∗ [·] =
√

var∗ [·] denotes risk-neutral volatility. These bounds depend only on

univariate risk-neutral expectations, so can be calculated from observable option prices.

But this approach is less efficient than the bounds derived above, because comonotonic

random variables are in general not perfectly positively correlated, and countermonotonic

random variables are in general not perfectly negatively correlated.6 It follows that bounds

obtained by “setting correlation equal to one” (or to minus one) will in general be looser

than the bounds supplied by Result 3.

6For example, if Z is Normal then eZ and eσZ are comonotonic if σ > 0 and countermonotonic if
σ < 0. But as σ tends to plus or minus infinity, the correlation between the two tends to zero.

11



Table A2, in the appendix, demonstrates the advantages of our approach by reporting

the relative widths of our bounds compared with the Cauchy–Schwarz bounds across

firms. The bounds based on the Fréchet–Hoeffding theorem are between 23% and 71%

narrower than the Cauchy–Schwarz bounds, with the best relative performance occurring

for the 1 month/20% pair which most closely conforms to the notion of a crash.

2 Data

We focus on firms included in the S&P 500 index, using index constituent information

from Compustat. Our sample runs from January 1996 to December 2022. On the last

trading day of each month t, we obtain, from OptionMetrics, the volatility surfaces of the

S&P 500 index and of all firms that are S&P 500 constituents during month t, together

with risk-free rates. We then obtain stock prices, returns, trading volumes and shares

outstanding from CRSP to construct a firm-month panel.

We face the issue that individual stock options are American style rather than Euro-

pean style. We deal with this issue, following the related literature (Carr and Wu, 2009;

Kelly, Lustig, and Van Nieuwerburgh, 2016; Christoffersen, Fournier, and Jacobs, 2018;

Martin and Wagner, 2019), by using volatility surfaces reported by OptionMetrics, who

use proprietary multinomial tree models to account for early exercise premia. In any case,

we believe that the distinction is likely to be relatively minor for our applications, as the

calculations required by Results 3 and 5 depend on the prices of out-of-the-money options.

When calculating the integrals in Result 5, we extrapolate a flat volatility smile outside

the range of observed strikes, as is also standard in the literature. Additional computa-

tional details for constructing our bounds are relegated to Section B of the Appendix.

3 Empirical Results

We write Ri,t→t+τ for the gross return on stock i from time t to time t + τ , PLi,t(τ, q)
and PUi,t(τ, q) for the lower and upper bounds on the probability that Ri,t→t+τ is less than

or equal to q, and P∗i,t(τ, q) for the corresponding risk-neutral probability. We set risk

aversion, γ, to two throughout.

Table 1 reports summary statistics for these measures with q = 80%, 90% and 95%, at

12



Table 1: Summary statistics

This table presents summary statistics of realized crash events, our crash probability bounds, and risk-
neutral crash probabilities. The sample data are monthly from January 1996 to December 2022. The
crash events (realized crashes) under consideration are I(Ri,t→t+τ ≤ q) for q = 0.80, 0.90, 0.95 and τ =
1, 3, 6, 12months. The bounds and risk-neutral probabilities are measures of the conditional probabilities
of crash events.

averaged across firms averaged across time
(number of obs. T = 324) (number of obs. N = 1044)

horizon 1 3 6 12 1 3 6 12

Panel A: q = 0.80, down by over 20%

realized mean 0.021 0.069 0.111 0.152 0.029 0.084 0.130 0.173
s.d. 0.048 0.107 0.141 0.160 0.059 0.092 0.129 0.166

lower bound mean 0.022 0.073 0.102 0.123 0.027 0.079 0.110 0.133
s.d. 0.020 0.029 0.028 0.027 0.029 0.046 0.052 0.056

upper bound mean 0.038 0.144 0.233 0.339 0.044 0.152 0.242 0.350
s.d. 0.040 0.071 0.082 0.098 0.042 0.069 0.079 0.089

risk-neutral mean 0.031 0.113 0.173 0.236 0.037 0.120 0.181 0.245
s.d. 0.031 0.050 0.053 0.059 0.036 0.058 0.065 0.072

Panel B: q = 0.90, down by over 10%

realized mean 0.096 0.173 0.211 0.236 0.110 0.191 0.231 0.252
s.d. 0.124 0.170 0.185 0.196 0.089 0.119 0.152 0.183

lower bound mean 0.109 0.168 0.196 0.210 0.118 0.179 0.206 0.219
s.d. 0.037 0.031 0.028 0.023 0.050 0.055 0.056 0.056

upper bound mean 0.156 0.277 0.366 0.466 0.166 0.289 0.378 0.475
s.d. 0.064 0.074 0.081 0.087 0.062 0.070 0.074 0.074

risk-neutral mean 0.136 0.228 0.286 0.341 0.145 0.239 0.297 0.350
s.d. 0.051 0.051 0.051 0.050 0.056 0.061 0.063 0.063

Panel C: q = 0.95, down by over 5%

realized mean 0.216 0.271 0.288 0.289 0.230 0.287 0.306 0.306
s.d. 0.187 0.200 0.204 0.210 0.101 0.122 0.155 0.185

lower bound mean 0.215 0.264 0.277 0.271 0.228 0.275 0.286 0.279
s.d. 0.036 0.024 0.020 0.020 0.052 0.049 0.047 0.048

upper bound mean 0.281 0.393 0.465 0.541 0.294 0.404 0.474 0.548
s.d. 0.064 0.064 0.066 0.074 0.059 0.058 0.056 0.057

risk-neutral mean 0.251 0.332 0.375 0.408 0.264 0.343 0.383 0.415
s.d. 0.049 0.041 0.038 0.040 0.055 0.052 0.049 0.050

13



1, 3, 6, and 12 month horizons. For comparison, we also report the realized frequencies of

crashes. Specifically, for each month from January 1996 to December 2022, we calculate

cross-sectional averages of the realized crash indicator I(Ri,t→t+τ ≤ q) (which equals one

if the realized return is less than or equal to q, and zero otherwise), the upper and lower

bounds, and the risk-neutral crash probabilities. The first four columns of the table

report the means and standard deviations of these T = 324 observations at each of the

four horizons.

Similarly, we calculate time-series averages of the same quantities for each of the

N = 1044 firms in our sample. The last four columns of Table 1 report the means and

standard deviations of these time-series averages. The sample means of cross-sectional

and time-series averages differ slightly because we have an unbalanced panel.

Consistent with the predictions of the theory and the discussion following Result 3, the

time-series and cross-sectional means of the lower bounds are close to the corresponding

mean realized crash frequencies, whereas the risk-neutral probabilities and (even more so)

the upper bounds overestimate the likelihood of crashes.

3.1 In-sample tests

3.1.1 Regression tests

To test whether the option-implied bounds successfully measure the probability of a crash,

we run the regression

I(Ri,t→t+τ ≤ q) = α + βXi,t(τ, q) + εi,t+τ (7)

for a range of crash sizes q and forecasting horizons τ . Here Xi,t(τ, q) is the lower or

upper bound on the crash probability (that is, PLi,t(τ, q) or PUi,t(τ, q)), or the risk-neutral

crash probability, P∗i,t(τ, q). Result 3 showed, under our maintained assumptions, that the

inequality

PLi,t(τ, q) ≤ Pt[Ri,t→t+τ ≤ q] ≤ PUi,t(τ, q)

holds for any stock i, forecasting horizon τ , and crash size q. If, moreover, one of the

bounds is close to the true crash probability, we should find α close to zero and β close

to one in the corresponding regression.
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Table 2: Regression tests of the option-implied crash probability bounds

This table reports the results from regressing the indicator function of realized equity returns being less
than a threshold q on the option-implied physical probability bounds, PLi,t(τ, q) and PUi,t(τ, q), as well
as the risk-neutral probabilities P∗i,t(τ, q). The data are monthly from January 1996 to December 2022.
Firms under consideration are S&P 500 constituents. The return horizon τ is one month, three months,
six months, or one year. Results in Panels A, B, and C are from the linear regressions,

I(Ri,t→t+τ ≤ q) = α+ βXit(τ, q) + εi,t+τ ,

in which q = 0.80, 0.90 and 0.95, and X stands for PL (the lower bounds), PU (the upper bounds), or
P∗ (the risk-neutral probabilities). The values in parentheses are firm-month two-way clustered standard
errors following Thompson (2011). The values in square brackets are standard errors following the panel
bootstrap procedures of Martin and Wagner (2019) using 2500 bootstrap samples.

lower bound upper bound risk neutral
horizon 1 3 6 12 1 3 6 12 1 3 6 12

Panel A: q = 0.80, down by over 20%

α 0.00 −0.01 −0.01 0.02 0.00 0.00 0.00 0.01 0.00 −0.01 −0.02 0.00
(0.00) (0.01) (0.01) (0.01) (0.00) (0.01) (0.01) (0.02) (0.00) (0.01) (0.01) (0.02)
[0.00] [0.01] [0.01] [0.01] [0.00] [0.01] [0.02] [0.03] [0.00] [0.01] [0.01] [0.03]

β 0.92 1.03 1.15 1.08 0.55 0.51 0.50 0.41 0.68 0.69 0.73 0.66
(0.11) (0.09) (0.09) (0.08) (0.08) (0.06) (0.06) (0.06) (0.09) (0.07) (0.07) (0.08)
[0.11] [0.15] [0.14] [0.12] [0.08] [0.08] [0.09] [0.10] [0.08] [0.10] [0.12] [0.13]

R2 5.66% 5.17% 4.78% 3.76% 5.29% 4.13% 3.26% 2.33% 5.45% 4.51% 3.91% 3.00%

Panel B: q = 0.90, down by over 10%

α −0.02 −0.01 −0.01 0.02 −0.02 0.00 0.01 0.05 −0.02 −0.02 −0.02 0.00
(0.01) (0.01) (0.01) (0.02) (0.01) (0.02) (0.02) (0.04) (0.01) (0.02) (0.02) (0.03)
[0.01] [0.01] [0.02] [0.03] [0.01] [0.03] [0.03] [0.06] [0.01] [0.02] [0.03] [0.04]

β 1.05 1.07 1.12 1.03 0.75 0.63 0.54 0.41 0.88 0.83 0.81 0.69
(0.08) (0.07) (0.07) (0.08) (0.07) (0.07) (0.07) (0.08) (0.08) (0.08) (0.08) (0.09)
[0.08] [0.10] [0.11] [0.13] [0.07] [0.11] [0.10] [0.13] [0.08] [0.11] [0.12] [0.14]

R2 5.47% 3.73% 3.43% 2.54% 5.36% 3.06% 2.20% 1.25% 5.47% 3.41% 2.84% 1.88%

Panel C: q = 0.95, down by over 5%

α 0.00 0.02 −0.01 0.05 0.00 0.05 0.06 0.11 0.00 0.01 −0.01 0.04
(0.01) (0.02) (0.02) (0.03) (0.02) (0.03) (0.04) (0.05) (0.02) (0.03) (0.03) (0.05)
[0.01] [0.03] [0.03] [0.06] [0.02] [0.05] [0.06] [0.09] [0.02] [0.04] [0.05] [0.07]

β 0.98 0.95 1.06 0.88 0.76 0.56 0.49 0.33 0.88 0.77 0.80 0.61
(0.07) (0.07) (0.08) (0.10) (0.08) (0.09) (0.09) (0.10) (0.08) (0.09) (0.10) (0.12)
[0.06] [0.10] [0.11] [0.18] [0.08] [0.13] [0.14] [0.17] [0.08] [0.12] [0.14] [0.17]

R2 3.01% 1.85% 1.86% 1.36% 3.02% 1.35% 0.94% 0.49% 3.08% 1.64% 1.45% 0.93%
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The regression results are shown in Table 2, which reports two-way clustered standard

errors in parentheses, following Thompson (2011), and block bootstrapped standard errors

in square brackets, using the procedure of Martin and Wagner (2019). Across crash

sizes and forecasting horizons—and for all three right-hand side variables—the estimated

intercepts are close to zero, while the estimated slope coefficients are positive and strongly

significant.

The estimated slope coefficients exhibit a clear monotonic pattern7 that is consis-

tent with the theory. The estimated coefficients on the lower bound are largest (averaging

around 1.03 across crash sizes and horizons); the estimated coefficients on the risk-neutral

probability are significantly below one (averaging around 0.75); and the estimated coeffi-

cients on the upper bound are smallest (averaging around 0.53).

In the case of the lower bound, the estimated coefficients are insignificantly different

from one at all horizons and for all crash sizes. Again, this is consistent with the discussion

following Result 3. The lower bound also outperforms the other two variables in an R2

sense for almost all horizons and crash sizes.

Tables A3, A4 and A5, in the appendix, report the same regressions with time fixed

effects, firm fixed effects, and time and firm fixed effects, respectively. (Although such

specifications are not useful for prediction without prior knowledge of the values of the

fixed effects, they help us to understand where the success of the predictor variables comes

from.) Table A3 shows that the slope coefficients are little changed by the introduction

of time fixed effects: thus our measures successfully explain cross-sectional variation in

crash probabilities. Tables A4 and A5 show that the slope coefficients remain highly

significant at short horizons when firm fixed effects are included, either on their own or

even jointly with time fixed effects (but not at the 12 month horizon, or at the 6 month

horizon for the smallest “crash” size, q = 0.95). For example, at the one-month horizon

with both time and firm fixed effects included, the coefficient on the lower bound is 0.73

for the largest crashes (q = 0.8), 0.65 for intermediate crashes (q = 0.90), and 0.43 for the

smallest crashes (q = 0.95), with standard errors in the range 0.04 to 0.10.

7Recall from Result 3 that the risk-neutral probability must lie between the upper and lower bounds.
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3.1.2 Validity and tightness tests

We now carry out formal tests of the validity and tightness of the crash probability bounds

based on conditional moment restrictions, following Back, Crotty, and Kazempour (2022)

(henceforth, BCK).

Let zt be a strictly positive vector of dimension d that incorporates conditioning

variables known at time t. This vector includes a set of candidate variables that might

help to determine crash probabilities, and it determines another vector, of the same length,

λ = E [{I(Ri,t→t+τ ≤ q)−Xi,t(τ, q)} zt] ,

where X represents lower or upper bounds. As each element of zt is strictly positive, we

can assess the validity of the lower bound8 by testing λ ≥ 0 against the alternative that

λ ∈ Rd (that is, λ is unrestricted). If the lower bound is valid, we can assess its tightness

by testing λ = 0 against the alternative λ ≥ 0. Similarly, we can assess the validity of the

upper bound by testing λ ≤ 0 against the alternative λ ∈ Rd, and assess its tightness by

testing λ = 0 against the alternative λ ≤ 0.

Following BCK, we include a constant in the vector zt, together with additional vari-

ables from Welch and Goyal (2008), transformed where necessary to guarantee positivity.

We then construct the estimator

λ̂ =
1

T

T∑
t=1

[
1

Nt

Nt∑
i=1

{I(Ri,t→t+τ ≤ q)−Xi,t(τ, q)} zt

]
,

where Nt is the number of firms at time t, and estimate the variance-covariance matrix

of λ̂ using the Driscoll and Kraay (1998) estimator to account for heteroskedasticity and

serial correlation in the time series and cross sectional dependence across firms.

Table 3 reports the results of the BCK tests. The headline result is that we do not

reject validity of either the upper or lower bounds at any horizon or crash size.

For all horizons and crash sizes we can, however, strongly reject the hypothesis that the

upper bound is tight. This is as expected: the upper bound is tight only if stock returns

8If the lower bound is valid then Et [I(Ri,t→t+τ ≤ q)−Xi,t(τ, q)] ≥ 0, where Xi,t(τ, q) = PLi,t(τ, q).
As zt is known at time t and strictly positive, it follows that Et [{I(Ri,t→t+τ ≤ q)−Xi,t(τ, q)} zt] ≥ 0,
and hence that E [{I(Ri,t→t+τ ≤ q)−Xi,t(τ, q)} zt] ≥ 0 by the law of iterated expectations.
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Table 3: Validity and tightness of the option-implied crash probability bounds: the Back,
Crotty, and Kazempour (2022) tests

This table reports p-values for tests of the validity and tightness of our proposed bounds, using the
methodology described in Back, Crotty, and Kazempour (2022). The data are monthly from January
1996 to December 2022. Firms under consideration are S&P 500 constituents. The return horizons,
denoted by τ , are one month, three months, six months, and one year. For q = 0.80, 0.90 and 0.95, define

λ = E [{I(Ri,t→t+τ ≤ q)−Xit(τ, q)} zt] ,

where X stands for PL (the lower bounds), PU (the upper bounds), or P∗ (the risk-neutral probabilities);
the elements of zt are 1) a constant one, 2) the dividend yield of the market, 3) the earnings yield of the
market, 4) the spread between five-year and three-month treasury yields, 5) the net equity issuance scaled
by the market capitalization, 6) the month-to-month inflation rate, 7) the BAA-AAA credit spread, 8) the
book-to-market ratio of the market, 9) the three-month treasury yield and 10) the VIX index. H0 : λ ≥ 0

vs. H1 : λ ∈ Rd tests if a lower bound is valid; H0 : λ = 0 vs. H1 : λ ≥ 0 tests if a lower bound is tight;
H0 : λ ≤ 0 vs. H1 : λ ∈ Rd tests if an upper bound is valid; H0 : λ = 0 vs. H1 : λ ≤ 0 tests if an upper
bound is tight.

lower bound upper bound
horizon 1 3 6 12 1 3 6 12

Panel A: q = 0.80, down by over 20%

validity 0.452 0.381 0.621 0.487 0.769 1.000 0.754 1.000
tightness 0.352 0.022 0.043 0.164 0.011 0.000 0.000 0.018

Panel B: q = 0.90, down by over 10%

validity 0.069 0.626 0.683 0.505 0.780 0.768 0.755 0.755
tightness 0.133 0.059 0.057 0.114 0.000 0.000 0.000 0.020

Panel C: q = 0.95, down by over 5%

validity 0.552 0.629 0.563 0.486 1.000 0.779 0.760 1.000
tightness 0.176 0.043 0.048 0.096 0.001 0.000 0.000 0.019
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and the market return are countermonotonic—that is, if all individual stock returns are

monotonically decreasing functions of the market return. This is implausible, even as an

approximation, for a single stock; and it cannot hold for all stocks given that the market

return is a weighted average of individual stock returns.

By contrast, and as noted above, we expect a priori that the lower bound should be

closer to the truth. Here the evidence of tightness is more mixed. We do not reject

tightness of the lower bound for any crash size at the 1-month horizon (with p-values on

the null varying between 0.133 and 0.352) or 12-month horizon (p-values between 0.096

and 0.164); but we can reject tightness with moderate confidence at the 3-month horizon

(p-values between 0.022 and 0.059) and 6-month horizon (p-values between 0.043 and

0.057).

3.1.3 Comparison with other predictor variables

For the rest of the paper, we focus on declines of at least 20%, which correspond most

closely to the idea of a crash.

The previous section established that the theoretically motivated quantity PLi,t(τ, q)
is a strongly statistically significant univariate forecaster of crashes, and that it is a

valid lower bound on the probability of a crash empirically. We now investigate whether

these empirical successes survive the introduction of various stock characteristics, and

compare the lower bound more directly with the forecasting performance of the risk-

neutral probability of a crash.

We consider three categories of stock characteristics. The first category focuses on

seven variables associated with the cross-section of expected stock returns: CAPM beta,

relative size (the logarithms of a firm’s market capitalization scaled by that of the S&P

500 index), book-to-market ratio, gross profitability (gross profits scaled by total assets),

two momentum measures (stock returns from month −6 to month −1 and month −12 to

month −1), and the most recent month’s return (as a reversal signal).

The second category includes four stock characteristics that the prior literature has

found useful in forecasting crashes: the volatility of market-adjusted returns and average

monthly turnover (both of which are highlighted in Chen, Hong, and Stein (2001)), sales

growth (Greenwood, Shleifer, and You, 2019), and short interest scaled by institutional

ownership (Asquith, Pathak, and Ritter, 2005; Daniel, Klos, and Rottke, 2023).
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The third category includes four variables motivated by the approach of Campbell,

Hilscher, and Szilagyi (2008) to forecasting corporate bankruptcies and failures: the lever-

age (debt-to-asset) ratio, net income scaled by total assets, cash and short-term investment

scaled by total assets, and log price per share. Appendix C gives further detail on the

construction of all fifteen characteristics, and Table A1 presents summary statistics.

Table 4 reports results for a crash of at least 20% over the next month. To make it

easier to assess the economic significance of the forecasting variables, we rescale the lower

bound, the risk-neutral probability, and all stock characteristics to have unit standard

deviation, and we multiply coefficient estimates by 100. As a result of this rescaling,

each coefficient measures the influence, in percentage points, of a one standard deviation

move in the relevant variable. Asterisks indicate coefficients whose t-statistics are greater

than 4 in absolute value.9

The first column of the table reports results for a multivariate regression of the crash

indicator variable onto the stock characteristics described above. Together, the charac-

teristics achieve an R2 of 4.51%. Two of the characteristics are highly significant: the

volatility measure of Chen, Hong, and Stein (2001) has a t-statistic around 7, and short

interest scaled by institutional ownership has a t-statistic above 4.

The second column shows that the lower bound, on its own, performs better than the

stock characteristics do collectively. It explains more of the variation in crashes, with R2

of 5.66%, and is highly statistically significant, with a t-statistic above 8. (This regression

is identical, up to the rescaling, to the regression with an estimated coefficient of 0.92

reported in Panel A of Table 2.)

The third column reports results of a multivariate regression that uses both the lower

bound and the stock characteristics to forecast crashes. The lower bound remains highly

significant, with a t-statistic above 5. Of the stock characteristics, only short interest

remains statistically significant, and the collective marginal contribution to explanatory

power of the characteristics is small. The coefficient on the lower bound is roughly an

order of magnitude greater than that on short interest: a one standard deviation move in

the lower bound moves the implied crash probability by 3.05 percentage points, whereas

a one standard deviation move in short interest moves the implied crash probability by

0.33 percentage points.

9We choose a high threshold to avoid false positives, as recommended by Harvey, Liu, and Zhu (2016).

20



Table 4: Regression tests of the option-implied crash probability bounds: adjusted re-
gressions for 20% crash in one month

This table reports the results from the following regressions:

I(Ri,t→t+1 ≤ 0.80) = β ·Xit(τ, 0.80) + λ · controlsit + εi,t+1,

in which X stands for PL (the lower bounds), P∗ (the risk-neutral probability), or both. The controls are
fifteen firm characteristics from the literature. All independent variables are transformed to have a unit
standard deviation. Regression coefficients are reported as percentage points, and their two-way clustered
standard errors are included in the parentheses. The first five columns are simple OLS estimates, and
the sixth column reports estimates with time fixed effects, with a projected (within) R2 replacing the
standard ones. Asterisks indicate coefficients whose t-statistics exceed four in magnitude.

I(Rt→t+1 ≤ 0.8)

(1) (2) (3) (4) (5) (6)

PL[Rt→t+1 ≤ 0.8] 3.41∗ 3.05∗ 4.44 2.74∗
(0.41) (0.59) (3.08) (0.33)

P∗[Rt→t+1 ≤ 0.8] 2.83∗ −1.40
(0.67) (3.37)

beta 0.48 0.12 0.18 0.10 0.23
(0.15) (0.16) (0.17) (0.14) (0.14)

relative size 0.07 −0.01 −0.03 0.00 0.09
(0.10) (0.10) (0.10) (0.10) (0.08)

book-to-market −0.18 −0.20 −0.20 −0.20 −0.07
(0.11) (0.11) (0.11) (0.11) (0.08)

gross profit. −0.14 −0.08 −0.10 −0.07 −0.04
(0.09) (0.09) (0.09) (0.08) (0.07)

r(t−1)→t −0.29 −0.09 −0.08 −0.11 −0.16
(0.18) (0.18) (0.19) (0.19) (0.13)

r(t−6)→(t−1) −0.45 −0.26 −0.25 −0.27 −0.35
(0.20) (0.20) (0.20) (0.20) (0.17)

r(t−12)→(t−1) −0.06 −0.07 −0.05 −0.08 −0.14
(0.20) (0.19) (0.19) (0.18) (0.17)

CHS-volatility 2.28∗ 0.30 0.43 0.31 0.50
(0.31) (0.38) (0.45) (0.39) (0.18)

turnover 0.18 −0.06 −0.07 −0.05 0.08
(0.27) (0.25) (0.24) (0.24) (0.15)

sales growth 0.21 0.20 0.21 0.20 0.13
(0.11) (0.11) (0.11) (0.11) (0.08)

short int. 0.39∗ 0.33∗ 0.36∗ 0.32∗ 0.27∗
(0.09) (0.08) (0.08) (0.08) (0.06)

leverage −0.15 −0.10 −0.13 −0.09 −0.07
(0.12) (0.12) (0.12) (0.11) (0.11)

net income/asset −0.21 −0.14 −0.17 −0.13 −0.14
(0.12) (0.12) (0.12) (0.11) (0.08)

cash/asset −0.09 −0.09 −0.08 −0.09 −0.03
(0.08) (0.08) (0.08) (0.08) (0.07)

log price −0.33 0.14 0.06 0.16 0.07
(0.16) (0.15) (0.15) (0.17) (0.13)

intercept 0.04 0.00 −0.03 −0.01 −0.03
(0.03) (0.00) (0.03) (0.03) (0.03)

R2/R2-proj. 4.51% 5.66% 5.85% 5.72% 5.87% 4.74%
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Columns (4) and (5) of the tables include the risk-neutral probability of a crash, either

alone as an alternative to the lower bound, or together with it. At all three horizons, the

risk-neutral probability enters strongly significantly when included on its own, but achieves

a lower R2 than the lower bound does. When both are included together, the coefficient

on the lower bound is positive while that on the risk-neutral probability is negative; but

the coefficients are imprecisely estimated, as the lower bound and risk-neutral probability

are highly correlated.

Tables A6 and A7, in the Appendix, report similar results over horizons of one quarter

and one year, respectively. As before, we rescale all right-hand side variables to have

unit standard deviation so that coefficient estimates indicate the economic importance

of the various potential predictors. The lower bound remains highly significant both in

statistical (the t-statistic is large) and economic (the estimated coefficient is large) terms.

In the univariate regression at the one-year horizon, for example, a one standard deviation

increase in the lower bound represents a 6.96 percentage point increase in the probability

of a crash, with a t-statistic above 12. When all stock characteristics are included, the

coefficient estimate drops to 5.28, with a t-statistic above 7. The stock characteristics are

somewhat more informative at this longer horizon: sales growth and short interest are

highly statistically significant with estimated coefficients of 1.86 and 2.28, respectively.

3.2 Out-of-sample forecasts

We now explore whether the lower bound performs well out of sample by using it as a

direct forecaster of crashes—that is, forcing the coefficients α and β in (7) to equal zero

and one, respectively, so that no parameters need to be estimated.

3.2.1 Comparison to historical averages

We first compare the lower bound to two natural benchmarks: the average historical crash

probability of all firms in our sample (a simple model which, at a given point in time,

makes the same prediction for all stocks), and the average historical crash probability for

stock i.

We assess relative performance of the bound versus these two models using the out-
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of-sample R2 measures

R2
oos, full−sample = 1−

∑
t

∑
i

{
I(Ri,t→t+τ ≤ 0.8)− PLt [Ri,t→t+τ ≤ 0.8]

}2∑
t

∑
i {I(Ri,t→t+τ , 0.8)− pt}2 (8)

and

R2
oos,firm−specific = 1−

∑
t

∑
i

{
I(Ri,t→t+τ ≤ 0.8)− PLt [Ri,t→t+τ ≤ 0.8]

}2∑
t

∑
i {I(Ri,t→t+τ , 0.8)− pi,t}2 , (9)

where τ denotes the forecasting horizon; PLt [Ri,t→t+τ ≤ 0.8] is the lower bound on the true

probability of a 20% crash; pt is the historical average crash probability estimated over

the period from 1 to (t − τ) across all firms in the sample; and pi,t is the corresponding

historical average crash probability for firm i.

We also repeat these exercises for the risk-neutral probabilities (that is, replacing

PLt [Ri,t→t+τ ≤ 0.8] with P∗t [Ri,t→t+τ ≤ 0.8] in equations (8) and (9) above).

Figure 3 plots the R2
oos measures, calculated over expanding windows. The lower

bound outperforms the two historical averages at all horizons, with R2
oos around 5% to

10%. Moreover, the outperformance is fairly consistent over time, as opposed to being

concentrated on a particular market episode. The risk-neutral probability does poorly

by comparison, with performance similar to that of the full-sample average at forecasting

horizons of six month or one year.

3.2.2 Comparison to characteristics-based models

To generate more a challenging competitor variable, we design a procedure to emulate an

avid “data-snooper”. We split the dataset into a training and a testing sample, and present

results for three different choices—2006, 2011, and 2016—of cutoff year. The fifteen

stock characteristics considered in Section 3.1.3 and the risk-neutral crash probability are

combined through linear and logistic regressions to forecast crash events; in each case,

we report results using only the fifteen stock characteristics, and using the fifteen stock

characteristics plus the risk-neutral probability. We fit these models in the training sample

and select the best model through cross-validation using the LASSO approach.

Figure 4 compares the resulting models with the lower bound in their ability to forecast

individual stock crashes at the one-month and one-year horizons. It plots the ROC curves

as a measure of forecasting performance that balances type-I and type-II forecasting errors.
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Figure 3: Out-of-sample R2s.

This figure presents the out-of-sample R2s for our option-implied lower bounds (OIB-LB) and the risk-
neutral probabilities (RN). For any time point t, the sum of squared forecasting errors using OIB-LB or
RN is compared against the sum of forecasting errors using full-sample or firm-specific average probability
of crashes through period 1 : (t− τ), where τ(= 1, 3, 6, 12) represents the forecasting horizon.
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On this diagram, the ROC curve for a random (i.e., totally uninformative) predictor

variable would be a 45 degree line; at the opposite extreme, the ROC curve for an oracle

(i.e., a perfect predictor of the future) would rise vertically to a true positive fraction of

1 at a false positive fraction of 0. More generally, superior predictors have ROC curves

shifted toward the top-left of the diagram. As is clear, the lower bound outperforms the

logistic LASSO and OLS LASSO models, particularly at the one-month horizon.

Table A8 reports the area under the ROC curves (AUC). A higher AUC indicates

better predictive performance. The lower bound dominates the LASSO models. The

three choices of cutoff year and four horizons give 12 AUC statistics for each model, and

the (univariate) lower bound outperforms the other (multivariate) models in all 12 cases.

4 Bounds for general contingent payoffs

Result 1, which underpins our empirical work, requires that the function g(x, y) = xγh(y)

is two-increasing. When this is not the case, we can modify our approach by exploiting a

result of Hofer and Iacò (2014). Specifically, for any well-behaved function k,

max
C∈C

∫
[0,1]2

k (u, v) dC(u, v) ≈ max
π∈Pn

1

n

n∑
i=1

k

(
i

n
,
π(i)

n

)
(10)

where Pn is the set of permutations of {1, . . . , n}, and the approximate equality can be

made to hold up to arbitrarily small error by choosing n sufficiently large. The two

conditions on k are that (i) it must be such that the integral is finite and (ii) it must be

Lipschitz continuous almost everywhere.

The right-hand side of (10) is the canonical linear assignment problem in combinatorial

optimization. The so-called Hungarian algorithm (Kuhn, 1955) reduces the complexity

of solving this problem from O(n!) (based on brute-force search) to O(n3). Similarly,

to obtain lower bounds, we can apply the Hungarian algorithm to the integral involving

−k(u, v). Using this approach, together with Sklar’s theorem, we have the following result.

Result 6. Let h be Lipschitz continuous almost everywhere. If πmin is a permutation

of {1, . . . , n} that minimizes
∑n

k=1 k
(
i
n
, π(i)

n

)
and πmax is a permutation that maximizes∑n

k=1 k
(
i
n
, π(i)

n

)
, then (up to errors that can be made arbitrarily small by choosing n
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Panel C: Training Sample 1996− 2016
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Figure 4: Out-of-sample forecasting of crash events: ROC curves from the option-implied
lower bounds (OIB) vs. characteristics-based statistical models

The figures above show ROC curves for forecasts of 20% crashes in a month or a year, using the option-
implied lower bounds (OIB-LB) and linear and logistic regressions with variables selected by the Lasso
(OLS-Lasso and Logistic-Lasso).
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sufficiently large)

1

nC

n∑
i=1

k

(
i

n
,
πmin(i)

n

)
≤ E[h(Ri)] ≤

1

nC

n∑
i=1

k

(
i

n
,
πmax(i)

n

)
,

where the constant C equals
∫ 1

0
[Q−1

m (u)]
γ
du and k(u, v) = g

(
Q−1
m (u), Q−1

i (v)
)
.

As a simple example, if we are interested in evaluating the probability that a stock’s

return lies in some interval, Result 6 can be applied with h(Ri) = I(q1 ≤ Ri ≤ q2).

5 Conclusion

We introduce a new forecasting variable that exploits information in option prices, and

which successfully predicts crashes in individual stocks. We do so as part of a more general

framework that supplies bounds on the expectation of a general function of the market

return and of an individual asset return.

We could, of course, use option prices in a straightforward way to calculate risk-

neutral probabilities of crashes. This approach is widely used by practitioners, and it

has an appealing simplicity. On the other hand, as is well understood, we should expect

such a measure to overstate the probability of a crash, as standard theory predicts that

risk-neutral probabilities put extra weight on bad outcomes. We confirm this expectation

in the data.

We would therefore like to move from risk-neutral probabilities to the true probabilities

in which we are ultimately interested. We rely on an assumption on the form of the SDF

to do so, namely that it is a power of the return on the the market, as in an equilibrium

model in which a myopic investor with power utility chooses to hold the market.

Even after making the power utility assumption, we face a further problem: to use

option prices to measure the true probability that a given stock crashes, we need to

understand the joint risk-neutral distribution of that stock and the market. But the

prices we observe—of options on the market and of options on individual stocks—only

reveal the univariate risk-neutral distributions of the market and of the individual stocks.

We solve this problem with the final theoretical ingredient of the paper, the Fréchet–

Hoeffding theorem, which places bounds on the relationship between the joint distribution
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and the marginal distributions that are tighter than those derived from the Cauchy–

Schwarz inequality. We use the theorem to derive upper and lower bounds on the proba-

bility that an individual stock crashes, and show theoretically (and confirm empirically)

that the upper and lower bounds are, respectively, higher and lower than the risk-neutral

probability that the given stock crashes.

The lower bound is tight if the return on the stock in question is a (potentially non-

linear) monotonic increasing function of the return on the market; correspondingly, the

upper bound would be tight if the stock return were a monotonic decreasing function of

the market return. The former is the more empirically plausible case, and indeed we find,

across forecasting horizons and crash sizes, that the lower bound is a highly statistically

significant forecaster of crashes. We find, moreover, that the estimated coefficient is close

to one, as it should be if the lower bound is a good proxy for the true crash probability.

(The upper bound and risk-neutral probability are also significant predictors of crashes,

but they enter with coefficients significantly less than one, as the theory leads us to expect,

and they achieve lower R2 than the lower bound does.)

When we conduct formal tests of the validity and tightness of the bounds, following

Back et al. (2022), we do not reject their validity. We can, as expected, strongly reject

the hypothesis that the upper bound is tight. The evidence on the tightness of the lower

bound is not decisive.

We compare the forecasting performance of the lower bound with 15 stock characteris-

tics suggested by the prior literature. When the characteristics are included in multivariate

regressions, the lower bound remains a highly statistically significant forecaster of crashes

at all horizons. At the one month horizon, it drives out 14 of the 15 characteristics, and

all 15 characteristics together contribute almost no incremental R2 relative to the lower

bound on its own. The one characteristic that is not driven out is a measure of short

interest. But even short interest’s economic importance is limited by comparison with

the lower bound: a one standard deviation increase in the lower bound raises the forecast

crash probability by 3 percentage points, whereas a one standard deviation move in short

interest raises the forecast probability by 0.3 percentage points.

We find similar results out of sample: at the one-month and one-quarter horizons, the

lower bound on its own outperforms LASSO models that exploit the 15 characteristics

and the risk-neutral probability combined.
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Appendix A Proofs

A.1 Proof of Result 1

Proof. When g(x, y), defined on [0,∞)×[0,∞), is continuous and two-increasing, k(u, v) =

g
(
Q−1
m (u), Q−1

i (v)
)
is two-increasing in [0, 1]× [0, 1]. We therefore have

inf
C∈C

∫
[0,1]2

k (u, v) dC(u, v) ≤
∫
g (x, y) dQmi(x, y) ≤ sup

C∈C

∫
[0,1]2

k (u, v) dC(u, v), (11)

where we write C for the set of all two-dimensional copulas, and

k(u, v) = g
(
Q−1
m (u), Q−1

i (v)
)
. (12)

From Corollary 2.2 of Tchen (1980), we have

inf
C∈C

∫
[0,1]2

k(u, v) dC(u, v) =

∫
[0,1]2

k(u, v) d (max(u+ v − 1, 0)) ,

and

sup
C∈C

∫
[0,1]2

k(u, v) dC(u, v) =

∫
[0,1]2

k(u, v) d (min(u, v)) .

The probability densities of the Fréchet–Hoeffding lower bound, max(u + v − 1, 0), and

the Fréchet–Hoeffding upper bound, min(u, v), are uniformly distributed along the two

diagonals of the square [0, 1]2 in R2, illustrated as follows:

0
u

v

0
u

v

density of max(u+ v − 1, 0)

density of min(u, v)

1

1

1

1

Integrating the right-hand sides of the two equations above (with regard to these two
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densities), we have

∫
[0,1]2

k(u, v) d (max(u+ v − 1, 0)) =

∫ 1

0

k(u, 1− u) du

and ∫
[0,1]2

k(u, v) d (min(u, v)) =

∫ 1

0

k(u, u) du.

Substituting these expressions back into (11) and using the definition (12) of k(u, v), it

follows that∫ 1

0

g
(
Q−1
m (u), Q−1

i (1− u)
)
du ≤

∫
g (x, y) dQmi(x, y) ≤

∫ 1

0

g
(
Q−1
m (u), Q−1

i (u)
)
du .

The result follows on making the change of variable Rm = Q−1
m (u) in the left- and right-

most integrals.

A.2 Proof of Result 2

Proof. Under the stated assumptions, the function g(x, y) = xγh(y) is continuous and

two-increasing. From Result 1, we have∫ 1

0

[
Q−1
m (1− u)

]γ
h
(
Q−1
i (u)

)
du ≤ E∗[Rγ

mh(Ri)] ≤
∫ 1

0

[
Q−1
m (u)

]γ
h
(
Q−1
i (u)

)
du.

Making the change of variables Rm = Q−1
m (u), it follows that

∫ 1

0

[
Q−1
m (u)

]γ
h
(
Q−1
i (1− u)

)
du =

∫ ∞
0

Rγ
mh(Q

−1
i (1−Qm(Rm))) dQm(Rm)

and ∫ 1

0

[
Q−1
m (u)

]γ
h
(
Q−1
i (u)

)
du =

∫ ∞
0

Rγ
mh(Q

−1
i (Qm(Rm))) dQm(Rm),

which give the bounds stated in the result.

The lower bound is achieved when the copula linking Qm and Qi is max(u+ v− 1, 0),

that is, the joint risk-neutral CDF of (Qm(Rm), Qi(Ri)) is max(u+ v− 1, 0). This implies

that Qm(Rm) + Qi(Ri) ≡ 1. Similarly, the upper bound is achieved when the joint risk-

neutral CDF of (Qm(Rm), Qi(Ri)) is min(u, v), that is, when Qi(Ri) = Qm(Rm).
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A.3 Proof of Result 3

Proof. Setting h(Ri) = −I(Ri ≤ q) in Result 2, we have

P[Ri ≤ q] =− E[h(Ri)]

≥−
E∗
[
Rγ
mh(Q

−1
i (Qm(Rm)))

]
E∗ [Rγ

m]

=
E∗ [Rγ

mI(Qm(Rm) ≤ Qi(q))]

E [Rγ
m]

=
E∗ [Rγ

mI (Rm ≤ ql)]

E [Rγ
m]

(ql = Q−1
m (Qi (q)) by definition).

The inequality holds with equality if and only if Rm and Ri are comonotonic—that is, one

is a monotonically increasing function of the other—so that Qi(Ri) = Qm(Rm). Similarly,

we have

P[Ri ≤ q] = −E[h(Ri)]

≤ −
E∗
[
Rγ
mh(Q

−1
i (1−Qm(Rm)))

]
E∗ [Rγ

m]

=
E∗ [Rγ

mI (1−Qm(Rm) ≤ Qi(q))]

E∗ [Rγ
m]

=
E∗ [Rγ

mI (Rm ≥ qu)]

E∗ [Rγ
m]

(qu = Q−1
m (1−Qi (q)) by definition).

Again, the inequality in the second step can be strictly equal if and only if Rm and Ri

are coutermonotonic—that is, one is a monotonically decreasing function of the other—so

that Qi(Ri) = 1−Qm(Rm).

The upper bound is always greater than the lower bound. A bridge between them is

the risk-neutral crash probability. Specifically, by the continuous version of Chebyshev’s

sum inequality,10

E∗ [Rγ
mI (Rm ≤ ql)]

E [Rγ
m]

≤ E∗ [Rγ
m]E∗ [I (Rm ≤ ql)]

E∗ [Rγ
m]

= Qm(ql) = Qi(q) = P∗[Ri ≤ q]

10This inequality states that for functions f and g which are integrable over [0, 1], both non-increasing
or both non-decreasing, then

∫ 1

0
f(x)g(x) dx ≥

∫ 1

0
f(x) dx

∫ 1

0
g(x) dx. If one function is non-increasing

and the other is non-decreasing, the inequality is reversed. Letting f(x) = [Q−1m (x)]γ (a non-decreasing
function of x), we derive the first inequality by setting g(x) = I(x ≤ Qi(q)) and the second by setting
g(x) = I(x ≥ Qi(q)).
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and

E∗ [Rγ
mI (Rm ≥ qu)]

E∗ [Rγ
m]

≥ E∗ [Rγ
m]E∗ [I (Rm ≥ qu)]

E∗ [Rγ
m]

= 1−Qm(qu) = Qi(q) = P∗[Ri ≤ q].

A.4 Proof of Result 4

Proof. When γ = 0, the bounds become P∗[Rm ≤ ql] ≤ P[Ri ≤ q] ≤ P∗[Rm ≥ qu]. By

definition, both the lower and upper bounds equal P∗[Ri ≤ q].

To show that the lower bound is decreasing in γ, define the (decreasing) function

ψ(x) = I(Qm(x) ≤ Qi(q)). The lower bound is then E∗[Rγ
mψ(Rm)]/E∗[Rγ

m] and

d

dγ

{
E∗[Rγ

mψ(Rm)]

E∗[Rγ
m]

}
=

E∗[Rγ
m log(Rm)ψ(Rm)]E∗[Rγ

m]− E∗[Rγ
mψ(Rm)]E∗[Rγ

m log(Rm)]

{E∗[Rγ
m]}2

=
1

{E∗[Rγ
m]}2

∫∫
[xγ log(x)ψ(x)yγ − xγψ(x)yγ log(y)] dQm(x) dQm(y)

≤ 1

{E∗[Rγ
m]}2

[∫∫
x≥y≥0

xγyγψ(y) log

(
x

y

)
dQm(x) dQm(y)

+

∫∫
0≤x≤y

xγyγψ(x) log

(
x

y

)
dQm(x) dQm(y)

]

=
1

{E∗[Rγ
m]}2

[∫∫
0≤x≤y

xγyγψ(x) log
(y
x

)
dQm(x) dQm(y)

+

∫∫
0≤x≤y

xγyγψ(x) log

(
x

y

)
dQm(x) dQm(y)

]
= 0.

(The inequality follows because ψ(x) ≤ ψ(y) if x ≥ y.) Thus the lower bound is decreasing

with regard to the risk aversion parameter γ.

Applying the same logic to the increasing function ψ(x) = I(Qm(x) ≥ 1−Qi(q)), we

conclude that the upper bound is increasing with regard to γ.

Next, note that the lower bound is such that

E∗ [Rγ
mI (Rm ≤ ql)]

E∗ [Rγ
m]

≤ qγl
E∗[Rγ

m]
.
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To show that the lower bound converges to zero, we must show that E∗[(Rm/ql)
γ] → ∞

as γ → ∞. This holds if P∗[Rm/ql > 1] > 0. If this condition does not hold, Rm ≤ ql =

Q−1
m (Qi(q)) with probability one, which violates the assumption that Qi(q) < 1. Thus,

E∗[(Rm/ql)
γ]→∞ and the lower bound converges to zero as γ →∞.

To show that the upper bound goes to one as γ →∞, note that

1 =
E∗[Rγ

mI(Rm < qu)] + E∗[Rγ
mI(Rm ≥ qu)]

E∗[Rγ
m]

.

The result will therefore follow if we can show that E∗[Rγ
mI(Rm < qu)]/E∗[Rγ

m] → 0

as γ → ∞. Again, this is satisfied when P∗[Rm/qu > 1] > 0. If not, we would have

Rm ≤ qu = Q−1
m (1 − Qi(q)), and hence 1 − Qi(q) = 1; but this violates the assumption

that Qi(q) > 0.

A.5 Proof of Result 5

Proof. By the Carr–Madan formula (Carr and Madan, 2001), for any smooth function

g(·) we have

g(S) = g(F )+g′(F )(S−F )+
∫ F

0

g′′(K)max{K−S, 0} dK+

∫ ∞
F

g′′(K)max{S−K, 0} dK.

Let S0 and F = S0Rf be the spot and forward level of the market index, the function

g(S) be Sγ. Treating S, a random variable, as the level of market index next period,

taking the risk-neutral expectations on both sides of the equation above (changing orders

of integrals when needed), we have

E∗ [Sγ] =Sγ0R
γ
f + γSγ−1

0 Rγ−1
f (E∗[S]− F )

+

∫ F

0

γ(γ − 1)Kγ−2Rfput(K) dK +

∫ ∞
F

γ(γ − 1)Kγ−2Rfcall(K) dK.

Dividing both sides by Sγ0 and noticing that Rm = S/S0 and that E∗[S] = F , we have the

first equation.

Next, noticing that

E∗ [Rγ
mI(Rm ≤ ql)] =

E∗ [SγI(S ≤ Kl)]

Sγ0
=
Rf

Sγ0

∫ Kl

0

Kγput′′(K) dK
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where the second equation follows by static replication logic (Breeden and Litzenberger,

1978). Integrating the last integral by parts and using the fact that put(0) = put′(0) = 0,

∫ Kl

0

Kγput′′(K) dK = Kγput′(K)
∣∣∣Kl

0
−
∫ Kl

0

γKγ−1put′(K) dK

= Kγ
l put

′(Kl)−
(
γKγ−1put(K)

∣∣∣Kl

0
−
∫ Kl

0

γ(γ − 1)Kγ−2put(K) dK

)
= Kγ

l put
′(Kl)−

(
γKγ−1

l put(Kl)−
∫ Kl

0

γ(γ − 1)Kγ−2put(K) dK

)
.

Plugging the expression back to the equation for E∗ [Rγ
mI(Rm ≤ ql)] yields the second

equation.

Finally, as

E∗ [Rγ
mI(Rm ≥ qu)] =

Rf

Sγ0

∫ ∞
Ku

KγRfcall
′′(K) dK,

following the same logic, we integrate the right-hand side integral by parts∫ ∞
Ku

Kγcall′′(K) dK = Kγcall′(K)
∣∣∣∞
Ku

−
∫ ∞
Ku

γKγ−1call′(K) dK

= −Kγ
ucall

′(Ku)−
(
γKγ−1call(K)

∣∣∣∞
Ku

−
∫ ∞
Ku

γ(γ − 1)Kγ−2call(K) dK

)
= −Kγ

ucall
′(Ku) +

(
γKγ−1

u call(Kl) +

∫ ∞
Ku

γ(γ − 1)Kγ−2call(K) dK

)
where the second and third equations rely on the fact that call′(∞) = 0 and call(∞) = 0

respectively. Multiplying the last formula by Rf/S
γ
0 leads to the third equation.

Appendix B Calculating the Option-Implied Bounds

Here we provide further implementation details on calculating the option-implied bounds.

Filtering. We applied four criteria to filter the implied volatility data in our sample: 1)

spot prices must be available from the CRSP database; 2) strike prices must be positive;

3) the OptionMetrics dispersion variable, a goodness-of-fit measure for OptionMetrics’

proprietary multinomial tree algorithm of constructing the volatility surface, must be

smaller than 0.05 and greater than zero; 4) for any firm-month-maturity combination, the

implied volatilities must be available at more than 10 different strike prices.
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Interpolation and extrapolation. At time t, we denote by {σit(K1, τ), . . . , σit(Kn, τ)}
the Black-Scholes implied volatilities of firm i’s options at strike prices K1 ≤ · · · ≤ Kn,

maturing at time (t+τ). These are observable volatility surface data from OptionMetrics.

We linearly interpolate implied volatility observations for any K such that K1 < K < Kn.

For strikes outside the observable range [K1, Kn], we extrapolate a flat volatility surface.

That is, for K ≤ K1, we set σit(K, τ) = σit(K1, τ), and, for K ≥ Kn, we set σit(K, τ) =

σit(Kn, τ).

Risk-free rates. All risk-free rates are sources from the OptionMetrics yield curve data.

At time t, for maturities at which the risk-free rates are not directly observable, we use

values linearly interpolated from the OptionMetrics yield curves.

The “clean” option prices. We construct option prices by applying the Black–Scholes

formula for a given strike K > 0, maturity τ , implied volatility σit(K, τ), risk-free rate

rf,t(τ), and spot price Sit. These are European option prices assuming zero dividend yield.

We compute these prices on a grid of 2000 steps within the interval K/Sit ∈ [1/L, L],

where L = 3 for one-, three-, and six-month horizons and L = 5 for the one-year horizon.

We only consider out-of-the-money options. That is, when K ≤ SitRf,t, we compute put

prices, where Rf,t = exp(rf,t(τ)τ); when K > SitRf,t, we compute call prices.

The risk-neutral marginals. Given put and call option prices on the grid of strikes, we

numerically compute the following gradients to recover the risk-neutral marginals:

Qit

(
K

S0

)
=

{
Rf,tput

′
it(K), K ≤ Rf,tSit

Rf,tcall
′
it(K) + 1, K > Rf,tSit

.

Only out-of-the-money option prices (derived from the corresponding implied volatilities)

are used to compute the risk-neutral marginals. We fit isotonic regressions to the raw

option-implied risk-neutral CDFs to guarantee monotonicity. We then winsorize the fitted

curve to ensure the CDFs are within [0, 1].

All procedures above are also applied to the S&P 500 index options.

We use Result 3 to compute the quantiles ql and qu, which involves both the risk-

neutral marginals for individual stocks and those for the market index. When applying

Result 5 to compute the numerators and denominators of our bounds, we use the S&P

500 index option prices on the fine grid to numerically evaluate the integrals according to

the midpoint rule.
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Appendix C Constructing Firm Characteristics

Firm characteristics used in the multiple regressions for crash probabilities are listed and

described below. All variables are constructed using a merged CRSP-Compustat firm-

month panel, unless otherwise noted.

Beta. The stock betas are estimated using daily return data within the windows of

the last 12 months.

Relative size. The relative size is the difference between the market capitalization of

a firm and the total market capitalization of the S&P 500 index in logarithmic terms.

Book to market ratio. The ratio is firms’ book value of equities divided by their market

capitalizations, calculated and updated at each fiscal quarter end.

Gross profitability. The numerator of this measure is the net revenue or the gross profit

of a firm at the end of each fiscal quarter. If both of these quantities are missing, we use

the summation of operating incomes and operating expenditures. The denominator is the

market value of assets, calculated as a firm’ market capitalization plus its book value of

debts. Dividing the market value of total assets creates measures that are more sensitive

to new firm-specific information (Campbell, Hilscher, and Szilagyi, 2008). Similarly, firm

characteristics such leverage, net income to asset, and cash to asset ratios will also be

scaled by the market value of assets throughout our analysis, as will be discussed later.

Momentum and reversals (r(t−6)→(t−1), r(t−12)→(t−1) and r(t−1)→t). These variables are

lagged (net) equity returns of firms from month −6 to −1 and −12 to −1 (two momentum

signals), as well as lagged one-month returns (reversals).

CHS-volatility. This measure is proposed in Chen, Hong, and Stein (2001) (CHS) for

crash forecasting. The volatility is the rolling-window standard deviation of the excess of

market returns (Ri−Rm), calculated based on daily return samples spanning the last six

month.

Turnover. The stock turnover variable is defined as the monthly trading volume

scaled by the number of shares outstanding. Following Chen, Hong, and Stein (2001),

we use the average turnover over the lagged six-month data samples as our turnover

characteristics. The trading volume on Nasdaq is adjusted according to the procedure

detailed in Appendix B of Gao and Ritter (2010). Specifically, we divide Nasdaq volume

by (1) 2.0 from January 1996 to January 2001; (2) 1.8 from February 2001to December
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2001; (3) 1.6 from January 2002 to December 2003; (4) 1.0 after January 2004 to the end

of our sample.

Sales growth. This variable is proposed for predicting industry-level stock crashes by

Greenwood, Shleifer, and You (2019). To be considered, firms must have at least two

consecutive years of revenue data. We calculate one-year sales growths based on the most

recent observations of the changes in revenue.

Short interest. This characteristics is the fraction of shares held by institutional in-

vestors that have been sold short, as considered in Asquith, Pathak, and Ritter (2005);

Daniel, Klos, and Rottke (2023). We divide the number of shares held short (available

from Compustat) by the number of shares held by institutional investors (aggregated

using Thomson-Reuters Institutional 13-F filings).

Leverage. We compute the leverage of a firm as its total liability (the book value

of debts) divided by the market value of its total assets (calculated as a firm’ market

capitalization plus its book value of debts).

Net income to the market value of total assets. This variable is an additional measure

of profitability based on the net income, proposed by Campbell, Hilscher, and Szilagyi

(2008) in the study of bankruptcy forecast.

Cash to the market value of total asset. This characteristics is a liquidity measure with

the numerator being cash and short-term investments, which is also incorporate in the

econometric model of Campbell, Hilscher, and Szilagyi (2008) to forecast bankruptcy.

Log price per share. We also include the log share prices in the sample, winsorized

from above at $15 per share (before taking logs) following Campbell, Hilscher, and Szilagyi

(2008). This variable is mainly used to isolate the tendency of firms traded at low prices

to crash.

To eliminate outliers, each of the fifteen characteristics described above are then win-

sorized within a 2.5 to 97.5 percentile interval. Table A1 tabulates the summary statistics

of all the characteristics for our sample.
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Table A1: Summary statistics of firm characteristics in our sample

char. mean sd median q25 q75 min max

beta 1.031 0.500 0.985 0.691 1.296 0.126 2.521
relative size −6.904 1.103 −7.007 −7.642 −6.272 −10.779 −2.618
book-to-market 0.468 0.330 0.377 0.234 0.615 0.055 1.545
gross profit. 0.159 0.097 0.145 0.092 0.204 0.014 0.487
r(t−1)→t 0.011 0.087 0.011 −0.039 0.060 −0.211 0.248
r(t−6)→(t−1) 0.066 0.219 0.063 −0.062 0.185 −0.452 0.729
r(t−12)→(t−1) 0.139 0.334 0.121 −0.064 0.309 −0.565 1.248
CHS-volatility 0.018 0.009 0.015 0.011 0.021 0.007 0.053
turnover 0.184 0.135 0.144 0.095 0.225 0.037 0.717
sales growth 0.084 0.201 0.059 −0.009 0.140 −0.334 0.918
short int. 0.046 0.067 0.026 0.015 0.047 0.003 0.426
leverage 0.442 0.221 0.400 0.269 0.599 0.107 0.913
net income/asset 0.025 0.024 0.026 0.015 0.038 −0.076 0.078
cash/asset 0.070 0.074 0.046 0.019 0.090 0.002 0.342
log price 2.679 0.137 2.708 2.708 2.708 1.733 2.708
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Appendix D Internet Appendix

Table A2: Relative bound widths: Fréchet–Hoeffding divided by Cauchy–Schwarz

This table reports summary statistics of the relative widths of bounds calculated according to Result 3
(based on the Fréchet–Hoeffding theorem, namely, the F-H bounds) and Equation 6 (based on the Cauchy–
Schwarz inequality, namely, the C-S bounds). That is, the ratios reported here the ranges of the F-H
bounds divided by the ranges of C-S bounds. We consider four different forecasting horizons and three
crash sizes. For every month from January 1996 to December 2022, we compute the two types of bounds
for each S&P 500 firm. The mean, standard deviation (sd), median, 25% and 75% sample quantile (q25
and q75), as well as the minimum and the maximum of the full firm-month panel are reported.

crash size horizon mean sd median q25 q75 min max

20% 1 0.291 0.170 0.269 0.160 0.411 0.000 0.800
20% 3 0.565 0.119 0.592 0.491 0.648 0.000 0.813
20% 6 0.659 0.071 0.662 0.623 0.706 0.000 0.811
20% 12 0.706 0.052 0.712 0.674 0.745 0.002 0.842

10% 1 0.544 0.107 0.565 0.487 0.618 0.000 0.848
10% 3 0.679 0.059 0.678 0.642 0.723 0.000 0.828
10% 6 0.727 0.043 0.733 0.698 0.761 0.000 0.812
10% 12 0.751 0.031 0.758 0.737 0.772 0.004 0.842

5% 1 0.615 0.083 0.630 0.578 0.668 0.000 0.849
5% 3 0.716 0.047 0.717 0.681 0.757 0.007 0.828
5% 6 0.751 0.033 0.761 0.735 0.775 0.098 0.812
5% 12 0.766 0.024 0.771 0.757 0.781 0.138 0.842
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Table A3: Regression tests of the option-implied crash probability bounds: OLS with
time fixed effects

This table reports the results from regressing the indicator function of realized equity returns being less
than a threshold, q, on the option-implied physical probability bounds, PLi,t(τ, q) and PUi,t(τ, q), as well
as the risk-neutral probabilities P∗i,t(τ, q). The data are monthly from January 1996 to December 2022.
Firms under consideration are S&P 500 constituents. The return horizons, denoted by τ , are one month,
three months, six months, and one year. Results in Panel A, B, C are from the linear regressions with
time fixed effects,

I(Ri,t→t+τ ≤ q) = αt + βXit(τ, q) + εi,t+τ ,

in which q = 0.80, 0.90 and 0.95, and X stands for PL (the lower bounds), PU (the upper bounds), or
P∗ (the risk-neutral probabilities). Values in parentheses are standard errors with two-way clustering
following Thompson (2011). Values in square brackets are standard errors from block bootstrap using
2500 bootstrap samples following Martin and Wagner (2019). Projected R2s are also reported.

lower bound upper bound risk neutral
horizon 1 3 6 12 1 3 6 12 1 3 6 12

Panel A: q = 0.80, down by over 20%

β 0.93 1.04 1.13 1.11 0.62 0.68 0.74 0.72 0.73 0.81 0.89 0.87
(0.09) (0.07) (0.06) (0.06) (0.06) (0.04) (0.04) (0.04) (0.07) (0.05) (0.05) (0.05)
[0.10] [0.10] [0.10] [0.08] [0.06] [0.09] [0.04] [0.06] [0.08] [0.05] [0.05] [0.06]

R2-proj 4.45% 4.66% 4.56% 4.11% 4.29% 4.46% 4.41% 4.08% 4.35% 4.54% 4.49% 4.10%

Panel B: q = 0.90, down by over 10%

β 0.99 1.00 1.06 1.06 0.81 0.79 0.83 0.83 0.89 0.89 0.95 0.95
(0.06) (0.05) (0.06) (0.06) (0.05) (0.04) (0.04) (0.05) (0.05) (0.05) (0.05) (0.06)
[0.07] [0.08] [0.06] [0.06] [0.05] [0.05] [0.06] [0.07] [0.06] [0.05] [0.08] [0.09]

R2-proj 4.02% 3.17% 3.18% 2.97% 3.96% 3.11% 3.14% 2.96% 3.98% 3.14% 3.17% 2.95%

Panel C: q = 0.95, down by over 5%

β 0.87 0.86 0.97 0.97 0.77 0.76 0.85 0.86 0.83 0.82 0.93 0.93
(0.05) (0.05) (0.07) (0.07) (0.04) (0.05) (0.06) (0.06) (0.05) (0.05) (0.06) (0.07)
[0.04] [0.06] [0.12] [0.07] [0.02] [0.08] [0.07] [0.06] [0.03] [0.09] [0.10] [0.09]

R2-proj 2.21% 1.62% 1.75% 1.84% 2.19% 1.60% 1.74% 1.85% 2.20% 1.61% 1.74% 1.84%
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Table A4: Regression tests of the option-implied crash probability bounds: OLS with
firm fixed effects

This table reports the results from regressing the indicator function of realized equity returns being less
than a threshold, q, on the option-implied physical probability bounds, PLi,t(τ, q) and PUi,t(τ, q), as well
as the risk-neutral probabilities P∗i,t(τ, q). The data are monthly from January 1996 to December 2022.
Firms under consideration are S&P 500 constituents. The return horizons, denoted by τ , are one month,
three months, six months, and one year. Results in Panels A, B and C are from the linear regressions
with firm fixed effects,

I(Ri,t→t+τ ≤ q) = αi + βXit(τ, q) + εi,t+τ ,

in which q = 0.80, 0.90 and 0.95, and X stands for PL (the lower bounds), PU (the upper bounds), or
P∗ (the risk-neutral probabilities). Values in parentheses are standard errors with two-way clustering
following Thompson (2011). Values in square brackets are standard errors from block bootstrap using
2500 bootstrap samples following Martin and Wagner (2019). Projected R2s are also reported.

lower bound upper bound risk neutral
horizon 1 3 6 12 1 3 6 12 1 3 6 12

Panel A: q = 0.80, down by over 20%

β 0.78 0.74 0.64 0.24 0.46 0.33 0.23 0.08 0.57 0.46 0.37 0.15
(0.12) (0.12) (0.12) (0.11) (0.08) (0.07) (0.07) (0.06) (0.10) (0.09) (0.09) (0.09)
[0.12] [0.15] [0.16] [0.26] [0.09] [0.11] [0.06] [0.08] [0.09] [0.05] [0.10] [0.10]

R2-proj 2.91% 1.60% 0.86% 0.11% 2.83% 1.28% 0.53% 0.08% 2.89% 1.39% 0.67% 0.10%

Panel B: q = 0.90, down by over 10%

β 0.88 0.67 0.52 0.09 0.61 0.37 0.20 0.00 0.72 0.50 0.34 0.04
(0.10) (0.11) (0.11) (0.12) (0.09) (0.09) (0.08) (0.09) (0.10) (0.11) (0.11) (0.11)
[0.10] [0.16] [0.18] [0.17] [0.11] [0.19] [0.09] [0.10] [0.11] [0.14] [0.17] [0.19]

R2-proj 2.48% 0.84% 0.39% 0.01% 2.60% 0.76% 0.22% 0.00% 2.60% 0.82% 0.32% 0.00%

Panel C: q = 0.95, down by over 5%

β 0.75 0.46 0.32 −0.11 0.58 0.25 0.07 −0.12 0.67 0.36 0.18 −0.15
(0.09) (0.10) (0.11) (0.13) (0.10) (0.12) (0.11) (0.11) (0.10) (0.12) (0.13) (0.14)
[0.13] [0.12] [0.19] [0.14] [0.08] [0.15] [0.19] [0.16] [0.13] [0.12] [0.15] [0.21]

R2-proj 1.13% 0.25% 0.10% 0.01% 1.29% 0.19% 0.02% 0.06% 1.27% 0.23% 0.05% 0.04%
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Table A5: Regression tests of the option-implied crash probability bounds: OLS with
both time and firm fixed effects

This table reports the results from regressing the indicator function of realized equity returns being less
than a threshold, q, on the option-implied physical probability bounds, PLi,t(τ, q) and PUi,t(τ, q), as well
as the risk-neutral probabilities P∗i,t(τ, q). The data are monthly from January 1996 to December 2022.
Firms under consideration are S&P 500 constituents. The return horizons, denoted by τ , are one month,
three months, six months, and one year. Results in Panels A, B and C are from the linear regressions
with both time and firm fixed effects,

I(Ri,t→t+τ ≤ q) = αi + λt + βXit(τ, q) + εi,t+τ ,

in which q = 0.80, 0.90 and 0.95, and X stands for PL (the lower bounds), PU (the upper bounds), or
P∗ (the risk-neutral probabilities). Values in parentheses are standard errors with two-way clustering
following Thompson (2011). Values in square brackets are standard errors from block bootstrap using
2500 bootstrap samples following Martin and Wagner (2019). Projected R2s are also reported.

lower bound upper bound risk neutral
horizon 1 3 6 12 1 3 6 12 1 3 6 12

Panel A: q = 0.80, down by over 20%

β 0.73 0.59 0.38 0.04 0.49 0.38 0.24 0.05 0.58 0.46 0.30 0.05
(0.09) (0.07) (0.06) (0.06) (0.06) (0.04) (0.04) (0.04) (0.07) (0.05) (0.05) (0.05)
[0.10] [0.07] [0.08] [0.07] [0.07] [0.07] [0.04] [0.04] [0.09] [0.06] [0.06] [0.06]

R2-proj 1.76% 0.74% 0.25% 0.00% 1.68% 0.68% 0.23% 0.01% 1.71% 0.70% 0.24% 0.01%

Panel B: q = 0.90, down by over 10%

β 0.65 0.35 0.18 −0.04 0.53 0.27 0.15 0.00 0.58 0.31 0.17 −0.01
(0.05) (0.05) (0.05) (0.06) (0.04) (0.04) (0.04) (0.04) (0.05) (0.04) (0.05) (0.05)
[0.08] [0.05] [0.05] [0.06] [0.06] [0.04] [0.04] [0.02] [0.04] [0.06] [0.06] [0.06]

R2-proj 0.90% 0.18% 0.04% 0.00% 0.88% 0.18% 0.05% 0.00% 0.89% 0.18% 0.05% 0.00%

Panel C: q = 0.95, down by over 5%

β 0.43 0.19 0.03 −0.16 0.39 0.17 0.05 −0.10 0.41 0.19 0.05 −0.13
(0.04) (0.04) (0.05) (0.06) (0.03) (0.04) (0.04) (0.05) (0.04) (0.04) (0.05) (0.06)
[0.04] [0.08] [0.06] [0.08] [0.03] [0.04] [0.09] [0.06] [0.03] [0.04] [0.08] [0.05]

R2-proj 0.30% 0.04% 0.00% 0.03% 0.30% 0.04% 0.00% 0.01% 0.30% 0.04% 0.00% 0.02%
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Table A6: Regression tests of the option-implied crash probability bounds: adjusted
regressions for 20% crash in one quarter

This table reports the results from the following regressions:

I(Ri,t→t+3 ≤ 0.80) = β ·Xit(τ, 0.80) + λ · controlsit + εi,t+3,

in which X stands for PL (the lower bounds), P∗ (the risk-neutral probability), or both. The controls are
fifteen firm characteristics from the literature. All independent variables are transformed to have a unit
standard deviation. Regression coefficients are reported as percentage points, and their two-way clustered
standard errors are included in the parentheses. The first five columns are simple OLS estimates, and
the sixth column reports estimates with time fixed effects, with a projected (within) R2 replacing the
standard ones. Asterisks indicate coefficients whose t-statistics exceed four in magnitude.

I(Rt→t+3 ≤ 0.8)

(1) (2) (3) (4) (5) (6)

PL[Rt→t+3 ≤ 0.8] 5.75∗ 4.23∗ 10.79 3.62∗
(0.51) (0.75) (2.83) (0.33)

P∗[Rt→t+3 ≤ 0.8] 2.66 −6.53
(0.81) (2.92)

beta 1.14 0.34 0.73 0.11 0.91
(0.31) (0.34) (0.35) (0.32) (0.26)

relative size −0.31 −0.25 −0.33 −0.10 0.01
(0.27) (0.26) (0.26) (0.26) (0.17)

book-to-market −0.30 −0.34 −0.32 −0.37 0.13
(0.21) (0.21) (0.21) (0.21) (0.17)

gross profit. −0.05 −0.05 −0.06 −0.02 0.11
(0.19) (0.18) (0.19) (0.18) (0.15)

r(t−1)→t −0.48 −0.27 −0.31 −0.36 −0.09
(0.38) (0.38) (0.38) (0.37) (0.20)

r(t−6)→(t−1) −0.78 −0.63 −0.66 −0.70 −0.50
(0.47) (0.48) (0.48) (0.45) (0.28)

r(t−12)→(t−1) −0.06 −0.15 −0.08 −0.24 −0.69
(0.48) (0.48) (0.48) (0.47) (0.32)

CHS-volatility 4.13∗ 1.39 2.35 1.52 1.09
(0.53) (0.68) (0.72) (0.66) (0.37)

turnover 0.59 0.17 0.33 0.18 0.72
(0.55) (0.52) (0.52) (0.51) (0.26)

sales growth 0.55 0.49 0.55 0.42 0.25
(0.20) (0.20) (0.20) (0.20) (0.12)

short int. 1.03∗ 0.94∗ 1.02∗ 0.83∗ 0.69∗
(0.19) (0.18) (0.19) (0.18) (0.14)

leverage −0.19 −0.05 −0.14 0.07 −0.06
(0.23) (0.23) (0.23) (0.22) (0.20)

net income/asset −0.48 −0.36 −0.47 −0.22 −0.33
(0.24) (0.24) (0.24) (0.23) (0.15)

cash/asset −0.25 −0.42 −0.34 −0.46 −0.15
(0.17) (0.17) (0.18) (0.17) (0.13)

log price 0.37 0.80 0.57 0.96 0.48
(0.22) (0.22) (0.21) (0.24) (0.17)

intercept −0.12 −0.01 −0.18 −0.16 −0.20∗
(0.05) (0.01) (0.05) (0.05) (0.05)

R2/R2-proj. 5.06% 5.17% 5.70% 5.36% 5.96% 5.24%
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Table A7: Regression tests of the option-implied crash probability bounds: adjusted
regressions for 20% crash in one year

This table reports the results from the following regressions:

I(Ri,t→t+12 ≤ 0.80) = β ·Xit(τ, 0.80) + λ · controlsit + εi,t+12,

in which X stands for PL (the lower bounds), P∗ (the risk-neutral probability), or both. The controls are
fifteen firm characteristics from the literature. All independent variables are transformed to have a unit
standard deviation. Regression coefficients are reported as percentage points, and their two-way clustered
standard errors are included in the parentheses. The first five columns are simple OLS estimates, and
the sixth column reports estimates with time fixed effects, with a projected (within) R2 replacing the
standard ones. Asterisks indicate coefficients whose t-statistics exceed four in magnitude.

I(Rt→t+12 ≤ 0.8)

(1) (2) (3) (4) (5) (6)

PL[Rt→t+12 ≤ 0.8] 6.96∗ 5.28∗ 9.17∗ 4.37∗
(0.54) (0.73) (2.09) (0.42)

P∗[Rt→t+12 ≤ 0.8] 2.55 −4.56
(0.95) (2.22)

beta 0.94 −0.26 0.54 −0.43 1.17
(0.42) (0.43) (0.48) (0.42) (0.41)

relative size −0.89 −0.32 −0.74 −0.17 0.32
(0.44) (0.44) (0.46) (0.44) (0.34)

book-to-market −1.35 −1.38 −1.37 −1.37 0.02
(0.41) (0.40) (0.41) (0.40) (0.32)

gross profit. −0.66 −0.67 −0.68 −0.64 −0.03
(0.38) (0.37) (0.37) (0.37) (0.32)

r(t−1)→t −0.38 −0.18 −0.23 −0.29 −0.45
(0.55) (0.54) (0.55) (0.52) (0.25)

r(t−6)→(t−1) −1.47 −1.39 −1.40 −1.46 −0.73
(0.67) (0.65) (0.67) (0.62) (0.34)

r(t−12)→(t−1) 1.17 0.92 1.11 0.84 0.33
(0.64) (0.63) (0.64) (0.61) (0.49)

CHS-volatility 5.32∗ 2.20 3.64 2.92 2.18
(0.77) (0.90) (0.93) (0.88) (0.56)

turnover 0.83 0.48 0.63 0.58 0.65
(0.81) (0.80) (0.79) (0.77) (0.42)

sales growth 2.00∗ 1.86∗ 1.99∗ 1.78∗ 0.93
(0.34) (0.34) (0.34) (0.34) (0.23)

short int. 2.42∗ 2.28∗ 2.40∗ 2.22∗ 2.04∗
(0.41) (0.40) (0.41) (0.40) (0.32)

leverage −0.44 −0.11 −0.36 −0.01 −0.23
(0.42) (0.41) (0.43) (0.41) (0.36)

net income/asset −0.91 −0.71 −0.91 −0.57 −0.38
(0.39) (0.38) (0.39) (0.37) (0.30)

cash/asset −0.62 −0.89 −0.72 −0.91 −0.40
(0.32) (0.31) (0.33) (0.31) (0.25)

log price 1.41 1.96∗ 1.58∗ 2.07∗ 1.18
(0.36) (0.37) (0.36) (0.37) (0.31)

intercept −0.28 0.02 −0.37∗ −0.33∗ −0.35∗
(0.08) (0.01) (0.08) (0.08) (0.08)

R2/R2-proj. 4.59% 3.76% 5.16% 4.74% 5.31% 4.99%
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Table A8: Area under the curve (AUC) statistics for out-of-sample forecasting: option-
implied lower bounds vs. characteristic-based statistical models

This table reports AUCs (in percentage points) of forecasting whether a stock’s return will crash over
20%, using the option-implied lower bounds (OIB-LB), as well as statistical procedures based on stock
characteristics and risk-neutral crash probability (RN). Stocks of firms belonging to the S&P 500 index
are considered. The data are monthly from January 1996 to December 2022. The return horizons are one
month, three month, six months, and one year. The training samples start at January 1996 and end at
December 2006, December 2011, or December 2016. The remaining data serve as our testing sample. The
two statistical procedures under consideration are linear and logistic regressions, with variables selected
by the LASSO (OLS-Lasso and Logistic-Lasso). The LASSO tuning parameters for sparsity control
are selected to maximize in-sample AUCs according to five-fold cross validations. AUCs (%) are then
reported for the testing samples.

AUC statistics (%)
maturity 1 3 6 12

Panel A: Training Sample 1996-2006

OIB-LB 85.89 72.00 67.95 63.65
OLS-Lasso 80.63 70.05 66.38 61.62
Logistic-Lasso 80.92 70.23 66.04 61.57
OLS-Lasso w. RN 85.80 70.88 66.81 61.79
Logistic-Lasso w. RN 84.10 71.15 66.61 61.69

Panel B: Training Sample 1996-2011

OIB-LB 84.99 69.04 67.46 65.09
OLS-Lasso 77.04 68.83 66.63 62.66
Logistic-Lasso 77.10 68.81 66.62 62.38
OLS-Lasso w. RN 84.88 68.98 66.95 62.89
Logistic-Lasso w. RN 84.93 68.79 66.80 62.61

Panel C: Training Sample 1996-2016

OIB-LB 83.92 63.41 63.57 62.19
OLS-Lasso 71.58 61.98 60.93 57.11
Logistic-Lasso 72.09 62.36 60.08 56.94
OLS-Lasso w. RN 83.70 62.00 61.17 57.92
Logistic-Lasso w. RN 83.40 61.40 61.31 57.50
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