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Abstract

I develop and estimate a limits-to-arbitrage model to quantify the effects of financial

constraints, arbitrage capital, and hedging demands on asset prices and their deviations

from frictionless benchmarks. Using foreign exchange derivatives market data, I find

that varying financial constraints and hedging demands contribute to 46 and 35 percent

variation in the deviations from covered interest parity of one-year maturities. While

arbitrage capital fluctuation explains the remaining 19 percent of variation on average,

it periodically stabilizes prices when the other two forces exert disproportionately large

impacts. The model features a general form of financial constraints and produces a

nonparametric arbitrage profit function. I unveil the shapes and dynamics of financial

constraints from estimates of this function.
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Modern finance theory and practice build heavily on the assumption of no arbitrage.

One of the textbook no-arbitrage conditions is covered interest rate parity (CIP): risk-free

rates are the same for all countries after exchange rate risk is fully hedged. Before the 2008

global financial crisis, this condition broadly holds in the data.1 After the crisis, significant

and persistent CIP violations have emerged for all major currency pairs.2 A failure of the

no-arbitrage assumption has become a new normal in one of the largest financial markets in

the world.

Existing limits-to-arbitrage theory provides guidance to understanding this phenomenon.

First, hedging demand imbalances in the foreign exchange (FX) forwards and swaps markets

can cause “price pressures”, misaligning forward premiums or currency swap rates. Second,

arbitrageurs such as trading desks of global FX dealer banks face binding limits to arbitrage.

As a result, they do not have the insatiable appetites to “arbitrage away” the deviations.3

With all the valuable theoretical perspectives, we still do not understand how quantita-

tively important each economic force is for CIP deviations. More broadly speaking, existing

limits-to-arbitrage models generally fall short in their potential to be directly mapped to

data and offer quantitative answers.

This paper aims to bridge the gap. I incorporate hedging demands and arbitrage limits

in a parsimonious model. Yields on arbitrage opportunities such as CIP deviations are direct

equilibrium outcomes from the model. The model further distinguishes two determinants

of arbitrage limits: arbitrageurs’ capital and financial constraints. Arbitrageurs’ optimal

trading decisions endogenously determine their capital accumulation. These decisions are

made under exogenously specified financial constraints that may arise from agency concerns

or regulatory requirements.

The key innovation of the model is that it allows for a general form of financial constraints

and provides identifying conditions for estimating these constraints. I show that arbitrageurs’

1Frenkel and Levich (1975, 1977) attribute CIP deviations to transactions costs. Taylor (1987) confirms
the CIP condition using high-frequency data within time windows of approximately one minute. Working
with tick-by-tick data, Akram, Rime, and Sarno (2008, 2009) find that most profitable deviations last
less than five minute and the CIP condition holds on average in their sample period from February 13 to
September 30, 2004.

2Baba and Packer (2009) analyze large CIP violations during the global financial crisis. Ivashina, Scharf-
stein, and Stein (2015) study short-maturity CIP deviations during the Eurozone sovereign crisis, emphasizing
their role as a barometer of wholesale dollar funding conditions. Du, Tepper, and Verdelhan (2018) establish
the new post-crisis benchmark of CIP deviations around 25 basis points and investigate the causes.

3Du, Tepper, and Verdelhan (2018) and Borio, McCauley, McGuire, and Sushko (2016) provide suggestive
evidence linking CIP deviations to both hedging demands and dealers’ limited arbitrage capacity.
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capital accumulates faster when arbitrage yields are large. In the meantime, significant price

gaps show up after adverse shocks that drain the arbitrage capital. How arbitrageurs’ capital

returns respond to yields on their arbitrage opportunities reveals the shape and dynamics

of binding financial constraints. I exploit this equilibrium relationship to back out financial

constraints from market price data.

I estimate hedging demands based on two additional equilibrium outcomes from the

model. On the one hand, financial constraints determine the maximized arbitrage profits. In

equilibrium, arbitrageurs “arbitrage alongside the margin” in the sense that their arbitrage

positions equal marginal increases in arbitrage profits regarding yields on their arbitrage

opportunities. I compute arbitrage positions based on estimates of financial constraints

leveraging this equilibrium outcome. On the other hand, equilibrium arbitrage yields such

as CIP deviations must equate external hedging demands with these arbitrage positions.

After computing the arbitrage positions, I can estimate the hedging demand functions for

different currency pairs.

I propose a variance decomposition scheme using the estimated model by computing

counterfactual CIP deviations after holding different model ingredients constant. According

to my decomposition, on average, 46 percent of variation in one-year CIP deviations of G6

currencies against the US dollar is due to changing financial constraints (throughout the

paper, the term “G6 currencies” refers to the euro, yen, pound, Canadian dollar, Australian

dollar, and Swiss Franc.) Demands for dollars in forward markets due to FX risk manage-

ment practices of exporters and global bond investors (hedging demands) explain another

35 percent. Fluctuations in arbitrageurs’ capital account for the remaining 19 percent.

Four sets of empirical findings emerge from analyzing the estimated model. First, the

importance of financial constraints and hedging demands in explaining CIP deviations varies

across currency pairs. Hedging demands account for 56 percent variation in the Canadian

dollar CIP deviations, but less than 30 percent in the context of yen and euro. Varying finan-

cial constraints fill the vacancy left by hedging demands for these two currencies, explaining

almost 60 percent variation in their basis against the dollar.

Second, arbitrageurs’ capital plays a unique role in influencing the deviations. In 2009-

2019, it contributes to a limited fraction of variation in CIP deviations (19 percent on

average, as pointed out earlier). However, it can stabilize the basis during periods of sig-

nificant variation in financial constraints or hedging demands. According to the variance
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decomposition results, shutting down hedging demand or financial friction variation always

reduces variation in CIP deviations. However, holding arbitrageurs’ capital constant can in-

crease fluctuations in the currency basis for certain periods. During these periods, arbitrage

capital counterbalances the other two forces and dampens variation in CIP deviations. For

example, in 2013-2014, the one-year Canadian dollar basis is overwhelmingly driven by hedg-

ing demands. If arbitrage capital remains constant, (counterfactual) variation in one-year

Canadian dollar CIP deviations would double.

Third, shapes of financial constraints change dramatically before and after 2014. These

shapes can help understand arbitrageurs’ internal capital allocation decisions in response to

regulatory reforms. In 2009-2013, arbitrageurs can build CIP arbitrage positions that are

at least four times larger than their equity capital without significantly downsizing other

investment positions. However, in 2014-2019, building the same size of arbitrage positions

will force the arbitrageurs to decrease standard investment positions by 40 percent. More

importantly, a hard leverage cap of around seven (times the equity capital) emerges for the

same period. This finding appears to be consistent with the fact that the supplementary

leverage ratio (SLR) requirement was finalized in the third quarter of 2014. Overall, the

shape of constraints after 2014 can be interpreted as a risk-weighted capital requirement

plus a hard leverage ratio requirement.

Finally, bilateral net exports and net foreign security purchases are dominant forces ex-

plaining currency hedging demands.4 For security purchases, all impacts on hedging demands

come from net bond purchases (as oppose to equity). The estimated demand functions sug-

gest that forward dollar demands increase in the US net exports and net bond purchases.

In other words, exporters and investors holding foreign bonds hedge more when they need

to repatriate more future incomes denominated in foreign currencies.

I now describe the model to provide intuitions on its mechanism and estimation. In the

model, competitive arbitrageurs trade with hedgers; trading determines equilibrium arbitrage

yields such as CIP deviations. Hedgers exchange specific currencies for dollars forward. I

build an optimizing foundation for this forward dollar demand in a two-country setting.

Hedgers from each country are subject to endowment shocks denominated in foreign cur-

4Net foreign security purchases are the difference between domestic (US) residents’ purchases of foreign
securities and foreign residents’ purchases of domestic securities. As a clarification, this measure does not
necessarily represent portfolio flows as “round-trip” trades can occur between international investors from
different countries.
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rencies. They manage their exchange rate risk using forward contracts. Differences in their

foreign endowments create hedging demand imbalances described by the demand functions

specified in the model.

Competitive arbitrageurs maximize (additive) discounted log utilities over their lifetime

consumption stream.5 They profit from multiple arbitrage opportunities by absorbing de-

mand imbalances in FX derivatives markets for different currency pairs. In the meantime,

they have access to standard investment opportunities: one risk-free and one risky asset.

Arbitrage limits arise from financial constraints on both their arbitrage positions and in-

vestment positions. The constraints induce a trade-off between deploying capital to their

standard investment business and diverting the resource to arbitrage activities. Sizable ar-

bitrage positions come at the cost of cutting back routine investment positions.

The model features an agnostic view regarding the specific form of financial constraints.6

This setup encompasses standard specifications of frictions such as the margin requirements,

leverage ratio requirements, Value-at-Risk rules, transaction costs, and credit/debt/funding

valuation adjustments. This generality in modeling choice allows me to reach robust theo-

retical conclusions and perform nonparametric estimation of the constraints. This approach

is particularly helpful given the sophisticated nature of post-crisis financial regulations. In

this new era, numerous regulatory constraints exist and many of them can be binding at the

same time.

Even without the dedication to a certain form of financial constraints, the model still

yields strong predictions. Most importantly, the model argues that the absolute values of

present arbitrage yields (e.g., CIP deviations) predict future returns on arbitrageurs’ capital,7

and this predictive relationship is convex. This increasing and convex function (of capital

returns in response to arbitrage yields) reveals the form of financial constraints. For example,

under margin requirements, the function equals zero when deviations are small and increases
5Simplified version of the model lasts two periods; the full model comes with infinite time horizon. I also

extend the theory for general constant relative risk-aversion (CRRA) utilities.
6In the model, arbitrageurs solve dynamic consumption and portfolio choice problems with one risk-free

asset, one risky asset, and multiple riskless arbitrage opportunities, under general position constraints: a
bounded, closed, and convex set. The specification of constraints is the same as Cvitanić and Karatzas
(1992), who solve the Merton model of one risk-free asset and multiple risky assets under general position
constraints. One theoretical contribution is that I characterize arbitrageurs’ optimality conditions using a
more accessible primal-dual approach.

7Though CIP basis can be positive (e.g., Australian dollars against US dollars) or negative (e.g., euro or
yen against US dollars), arbitrageurs can always profit from it by properly switching legs of their positions.
Thus, absolute values of the deviations contribute to arbitrage profits. I will stop mentioning “the absolute
values” later on in the introduction for the ease of exposition.
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linearly after a threshold. However, with Value-at-Risk rules, arbitrageurs’ capital returns

smoothly respond to all levels of deviations regardless how small they are. The function is

defined in the same way as the profit function in standard production theories, thus named

the arbitrage profit function. A more convex arbitrage profit function implies a higher hurdle

for arbitrageurs to covert CIP deviations into sizable arbitrage profits.

Empirical evidence supports the prediction. Average CIP deviations among G6 currencies

predict monthly and quarterly returns on arbitrageurs’ capital, after controlling for common

time-series return predictors. One basis point increase in the average deviations forecasts at

least two percentage point increase in the (annualized) returns. Two statistical tests, one

parametric and another semi-parametric confirm that the predictive relationship is convex.

Model estimation takes two steps, both relying on equilibrium outcomes of the model.

The first step is to estimate the arbitrage profit function, which characterizes the increasing

and convex response of arbitrageurs’ capital returns to CIP deviations. The model allows

this function to change across time, reflecting varying stringency of financial constraints. I

develop a new statistical procedure to estimate both the functional form and time-series vari-

ation of arbitrage profit functions in the model. The functional form reveals how the (bind-

ing) financial constraints look like collectively; the time-series variation describes dynamics of

the constraints. I compute equilibrium arbitrage positions using the these estimates, which

can be inferred from market prices once the arbitrage profit function is known.

The second step is estimating parameters in hedging demand functions. In equilib-

rium, CIP deviations in the model are such that arbitrage positions equal hedging demands.

Plugging-in the inferred arbitrage positions enable demand estimation without using position

data in FX derivatives markets. To resolve the endogeneity concerns about CIP deviations

and latent demands (unobservable drivers of hedging demands), I construct an instrumental

variable estimator for demand elasticities. The instruments for the deviations of one cur-

rency are observable hedging demand drivers of other currencies. The identification strategy

is motivated by the fact that FX arbitrageurs such as global dealer banks can profit from mul-

tiple currency basis simultaneously. For a specific currency, hedging demand drivers of other

currencies shift arbitrage profits. Arbitrage positions exploiting the CIP deviations of this

particular currency change accordingly. The instruments effectively become “supply shifters”

(if we interpret arbitrageurs as suppliers of “arbitrage services”) that are uncorrelated with

latent demands.
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Broader contribution of this paper is twofold. Typically, there is a separation of theory

and empirics in the limits-to-arbitrage literature. I aim to partially bridge the gap by building

a model that synthesizes necessary ingredients in the existing theory and maps directly to the

data to quantify the economic forces at work. The backbone of my model is close to Gabaix

and Maggiori (2015), who study real imbalances in the currency spot markets absorbed by

“financiers” facing commitment problems (which translate into quadratic position limits).

My model focuses on hedging demand imbalances in FX forwards and swaps markets. It

specifies financial frictions in a general format. I further quantify demand imbalances and

financial frictions to explain empirical patterns and facilitate counterfactual exercises.

The second contribution is methodological: the estimation framework can be applied to

other violations of the no-arbitrage condition in today’s financial markets. I demonstrate

how to back out the financial constraints and arbitrage positions from arbitrageurs’ capital

returns and arbitrage yields. The flexible nonparametric arbitrage profit function approach

is particularly useful in light of the numerous regulatory reforms after 2008. Unlike the

demand system approach to asset pricing (Koijen and Yogo, 2019), my methodology for

estimating demand function parameters does not rely on position data (though high-quality

position data can help discipline my estimation), but instead draws inferences using price

data based on arbitrageurs’ optimality conditions.

Literature. The key ingredients of my model, demand shocks and the limited arbitrage

capacity, follows the standard limits-to-arbitrage literature. Examples for demand shocks

in the FX derivatives markets include i. hedging demands of currency carry traders (Du,

Tepper, and Verdelhan (2018) offer suggestive evidence based on the association between

cross-sectional variation in CIP deviations and average interest rate differentials); ii. financial

institutions’ FX risk management practices (Puriya and Bräuning (2021) identify this driving

force for short-maturity FX forward contracts). Price impacts of demand shocks have also

been investigated in markets of commodity futures by Acharya, Lochstoer, and Ramadorai

(2013), options by Gârrleanu, Pedersen, and Poteshman (2008), long-term interest rate swaps

by Klingler and Sundaresan (2019), government bonds by Greenwood and Vayanos (2010),

public equities by Coval and Stafford (2007) and Lou (2012). My empirical findings on

the importance of hedging demands from exporters and foreign currency long-term bond

investors in driving forward dollar demands and determining CIP deviations complement

this literature.
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The literature on financial constraints is enormous. In the field of international finance,

see Gabaix and Maggiori (2015) for their impacts on spot exchange rates. In financial eco-

nomics, Gârleanu and Pedersen (2011) and Gromb and Vayanos (2002, 2018) are examples

of theories examining violations of the law of one price in light of margin or collateral con-

straints. Andersen, Duffie, and Song (2019) explain CIP deviations in light of debt-overhang

costs to equity holders of derivatives dealers. In models such as Kyle and Xiong (2001) and

Kondor and Vayanos (2019), aggregate arbitrage capital endogenously creates risk-aversion

dynamics, inducing commonality in asset prices in response to arbitrage capital fluctua-

tions. My contribution to the literature is that I characterize equilibrium outcomes which

are robust to assumptions about the financial constraints, and develop empirical methods

for estimating functional form of the constraints.

Vayanos and Vila (2021) is an example of quantitative limits-to-arbitrage models for

government bond markets, calibrated to predictive regression coefficients. Jermann (2020)

presents and calibrates a model featuring holding costs for long-term bond to explain nega-

tive swap spreads after the financial crisis. My empirical approach distinguishes from their

exercises by directly estimating the equilibrium conditions using asset price data. To my

knowledge, this paper presents the first fully estimated limits-to-arbitrage model, which

explains not just the level but also the variation in deviations from the law of one price.

The paper is structured as follows. Section 1 briefly reviews the definition and measure-

ments of CIP deviations to provide additional backgrounds. Section 2 presents a simplified

version of the model to illustrate key intuitions. Section 3 introduces the full model and char-

acterizes its equilibrium outcomes. Section 4 describes additional data and measurements,

tests the model’s main prediction, enriches the model to map it to data, and describes esti-

mation methodologies. Section 5 performs quantitative exercises using the estimated model.

Section 6 concludes. All proofs are in the Appendix.

1 CIP deviations and their measures

At time t, the CIP deviation for currency i of maturity τ is b such that the following equation

holds:

exp
(
r$t→(t+τ)τ

)
= exp

(
rit→(t+τ)τ + bτ

)Ft→(t+τ)

Et

, (1)
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where r$t→(t+τ) and rit→(t+τ) represent risk-free rates of the US dollar and currency i from time

t to (t + τ); Ft→(t+τ) is the forward price of currency i in dollars maturing at time (t + τ);

Et is the spot price.

Following Du, Tepper, and Verdelhan (2018), I focus on two measures of CIP deviations

using different derivative contracts: FX forwards and cross-currency basis swaps (currency

or basis swaps in short). From FX forward contracts, observable currency forward prices

Ft→(t+τ) (thus observable forward premiums Ft→(t+τ)/Et) can be plugged in to the equation

above. The two risk-free rates r$t and rit are commonly measured by over-night index swap

(OIS) rates for different countries. I call CIP deviations calculated from equation (1) using

these variables the forward-OIS bases.

A more direct measure of CIP deviations comes from the currency swap contracts. In

a currency swap contract, two parties (namely Alice and Bob) exchange currencies at spot

rates upfront and pay each other back effectively with floating rate bonds. Specifically, Alice,

receiving £100 from Bob initially, will pay Bob back with (cashflows of) a pound floating

rate bond (face value = £100); Bob, receiving $135 (let Et = 1.35 be the GBP/USD spot

rate) from Alice at beginning of the contract, will pay Alice back with a dollar floating rate

bond (face value = $135). Currency swap contracts quote b such that Bob pays the the

dollar floating rates {r$t→(t+∆t), r
$
(t+∆t)→(t+2∆t), . . .}, and Alice pays adjusted pound floating

rates {r£t→(t+∆t), r
£
(t+∆t)→(t+2∆t), . . .} + b. The payments are usually made on a quarterly

basis (i.e., ∆t = 0.25). Back to equation (1), we can interpret this quoted currency swap

rate as CIP deviations defined through treating r$t→(t+τ) and rit→(t+τ) as interest rate swap

rates (swapping the two floating rates). Du, Tepper, and Verdelhan (2018) and Augustin,

Chernov, Schmid, and Song (2020) describe detailed trading arrangements justifying this

conclusion.

Throughout this paper, I focus on one-year currency swap rates and use forward-OIS

implied one-year CIP deviations for validation. At this maturity, both the FX forwards

and currency swaps have high trading volumes and low bid-ask spreads. I collect the FX

forward/spot prices, OIS rates, and currency swap rates from Bloomberg. Table 1 reports

summary statistics of the two deviation measures; Figure A1 in the Appendix plots these two

measures for G6 currencies. Overall, currency swap rates offer more conservative and less

volatile measures of CIP deviations compared with the forward-OIS bases at the one-year

maturity.
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2 A simple model in a two-period deterministic economy

To begin with, I present a simple model with no uncertainty to illustrate key insights of

the model. As a preview, the model features an agnostic view about the specific constraints

arbitrageurs face, predicts a convex relationship between arbitrageurs’ investment return

and their arbitrage profit (from CIP deviations), and determines CIP deviations as tractable

equilibrium outcomes.

The economy lasts for two periods: today and tomorrow.8 There are two types of agents:

arbitrageurs and hedgers. Each type composes an identical continuum of measure one.

Arbitrageurs. Each arbitrageur is endowed with initial capital k today. They choose

their consumptions and derive utilities from them as follows:

log(y) +
1

1 + ρ
log(y′). (2)

The subjective time discount rate 1/(1 + ρ) belongs to the interval (0, 1), i.e., ρ > 0;

consumptions are y today and y′ tomorrow.

The arbitrageurs can invest in a risk-free asset earning a net return r (r > 0), or simply

store their capital safely with zero net return. I assume that the amount of capital stored

cannot be negative.9 Arbitrageurs can also profit from a riskless arbitrage opportunity,

yielding b per unit of position they enter. For currency markets, we can interpret b as CIP

deviations, which is either positive (e.g., Australian dollars) or negative (e.g., yen).

By consuming y today, arbitrageurs are saving (or equivalently, investing) s = (k − y)

amount of capital to fund their future consumption. Denote by π0 and π the “weights” of

their investment positions in the risk-free asset and the arbitrage opportunity, their absolute

positions are π0s and πs accordingly. To earn the risk-free rate of return, capital is needed:

(1+r)π0s units of capital next period come at a cost of π0s today. In comparison, harvesting

the arbitrage profits πsb next period requires no capital today. As a result, the arbitrageurs’

8Notation-wise, variables tomorrow come with prime superscripts.
9This claim rules the possibility that arbitrageurs can raise fund by paying a gross interest rate of one

(the storage yield), for this itself leads to another riskless arbitrage within the model: borrowing at cost one,
investing in the risk-free asset yielding (1+ r). The storage technology is needed in the model because, after
introducing arbitrage limits later in the paper, arbitrageurs need to devote capital to arbitrage positions.
The capital buttressing their arbitrage activities is “stored” in the sense that they cannot generate a return
as high as r. We can treat the zero storage yield here as a normalization.
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capital next period k′ is given by

k′ = s+ π0s(1 + r)− π0s+ πsb− 0 = s [1 + π0r + πb] . (3)

According to equation (3), arbitrageurs store (1 − π0)s units of capital (after investing π0s

in the risk-free asset). As the economy lasts for only two periods, arbitrageurs consume all

their capital tomorrow, i.e., y′ = k′.

Replacing y′ in problem (2) with s [1 + π0r + πb], we can see that arbitrageurs are solving

two separate problems:

maximize
y, s=k−y

log(y) +
1

1 + ρ
log(s) and maximize

π0≤1, π∈R
log(1 + π0r + πb). (4)

The restriction π0 ≤ 1 appearing in the second problem is due to the assumption that capital

stored is nonnegative, that is, (1− π0)s ≥ 0.

Hedgers. Hedgers use currency forwards or swaps to manage their foreign exchange

exposures. Under the context of CIP deviations, I assume that their (aggregate) demand for

selling foreign currencies (say, pounds) in exchange for dollars in forward markets is

q(b) = γ0 − γb, γ > 0. (5)

These forward dollar demands are downward sloping with regard to the CIP deviation b.

This is because, according to equation (1), a smaller b for the pound is equivalent to higher

forward price of pounds against dollars. It propels hedgers’ willingness to sell pounds for

dollars forward, creating higher forward dollar demands.10

The equilibrium arbitrage yield. Arbitrageurs “take the opposite side” against

10Appendix C provides an optimization foundation to the reduced form specification (5). I build a two-
country currency-risk hedging model, in which US hedgers manage their currency exposures through selling
pounds and UK hedgers conduct the opposite trade in pound-dollar forward market. Their hedging needs
do not necessarily cancel out, which give rise to the (net) demands specified in (5), representing hedging
demand imbalances in currency markets.

The hedging demand q(b) can take either positive or negative signs. According to the micro-foundation
in Appendix C, US hedgers offer forward pounds for dollars while UK hedgers seek opposite trades. When
the US hedgers’ demand exceeds its UK counterpart, q(b) is positive. The net effect is a positive demand
for forward dollars. This demand becomes negative when the UK hedgers hedge more. In other words, a
negative q(b) can be interpreted as the net demand for foreign currencies (by selling dollars forward).

When the demand q is negative, hedgers are selling forward dollars in exchange for pounds, causing
negative forward dollar demands. As b becomes smaller (thus a higher forward GBP/USD price F or, to put
it differently, a lower dollar forward price), hedgers tend to sell less dollar: q still increases as b decreases.
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hedgers’ demands: their arbitrage positions are effectively forward dollar supplies. When

hedgers sell pounds for dollars forward (positive forward dollar demand, q > 0), press-

ing GBP/USD forward price to drop below the no-arbitrage benchmark, a positive CIP

deviation emerges.11 In response, arbitrageurs can take advantage of this opportunity by

borrowing pounds (yielding −r£), swapping pounds to dollars (yielding r£ + b − r$), and

lending dollars (yielding +r$). They supply dollars in the currency forward markets because

of the need to payback the dollars they received at the beginning of the swap contract. A

more simplistic view is that with b > 0, the forward price of GBP/USD is relatively low,

arbitrageurs tend to offer (supply) dollars to buy pounds forward. Their total supply of

dollars π(b)s is positive,12 in which π(b) solves (4) for a given b. The equilibrium deviations

solve the following equation:

π(b)s = q(b). (6)

Of note, all the analysis goes through in the same way when there is a negative forward

dollar demand, i.e., q < 0.13

The equilibrium b that solves (6) is such that

b =
γ0

γ + π(b)/b× s
. (7)

The frictionless benchmark. Without friction, the second maximization problem in

(4) commands π0 = 1 and |π(b)| → ∞ whenever |b| > 0. This implies that π(b)/b → ∞ for

any b around a neighborhood of zero. According to equation (7), the equilibrium deviation

is zero. Absence of arbitrage in the model is a result of “hyper-elastic” arbitrage positions in

response to arbitrage yields.

Limits to arbitrage. Arbitrage limits that cause CIP deviations must prevent π(b)/b

11Without frictions, arbitrageurs absorb hedging demands imbalances “with ease” and equilibrium devia-
tions always equal zero. This ideal outcome As we will show later in Proposition 2, when there are arbitrage
limits, a positive forward dollar demand, q > 0, is equivalent to both γ0 > 0 and the equilibrium CIP
deviations b∗ to be 0 < b∗ ≤ γ0/γ.

12I provide rigorous theoretical arguments for this through Lemma A.1 in the Appendix.
13With negative forward dollar demand, i.e., q < 0, Proposition 2 presented later commands a negative

b. Arbitrageurs will borrow dollars (yielding −r$), swap dollars for pounds (yielding r$ − r£ − b), and lend
pounds (yielding r£). Their optimal arbitrage position π(b)s is negative, which implies a negative supply of
forward dollars (demanding dollars forward). This negative supply is due to the fact that arbitrageurs will
receive forward dollars and return pounds at the end of their swap contracts.
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from going to infinity whenever b deviates from zero. I assume that they arise from the

following position constraint on π0 and π:

(π0, π) ∈ C, (8)

in which C is a subset of (−∞, 1]×R (domains defined in the second problem of (4)), outside

of which the combination of π0 and π becomes infeasible. Under this assumption, the second

problem of (4) is equivalent to maximize (π0r+πb) subject to the condition that (π0, π) ∈ C.

The outcome from solving this problem represents the optimal return on investment for the

arbitrageurs, denoted by

SC(r, b) = sup
(π0, π)∈C

{π0r + πb} . (9)

SC is often named the support function of the set C. It works the same way as the profit

function in the standard production theory, when the set C is a production set (Mas-Colell,

Whinston, and Green, 1995, Chapter 5.B-5.C, p. 128-143). We can call this function the

arbitrage profit function. As I will illustrate soon, this function defines the optimal investment

return per unit of capital for arbitrageurs.

The trade-off arbitrageurs face is fully characterized by the position constraint. When

they extend their positions to take advantage of an arbitrage opportunity, they have to

cut positions on the risk-free asset (i.e., put a fraction (1 − π0) of their capital inefficiently

in storage). Facing this trade-off, arbitrageurs optimally allocate their capital such that

they enjoy a (net) return of SC(r, b) per unit of savings. As a result, in equilibrium, k′ =

s[1+SC(r, b)]. Now I enumerate four assumptions about the constraint C and one assumption

about the arbitrageurs’ positions.

Assumption 1. C is a subset of [0, 1]× R.

The assumption that π0 ≤ 1 reiterates (1 − π0)s ≥ 0, that is, “negative storage” is not

allowed – arbitrageurs cannot borrow money at a zero net interest rate. Assuming π0 ≥ 0

forbids arbitrageurs from borrowing at the rate r and then storing the proceeds (to further

enlarge their arbitrage positions after exhausting all their initial capital k).

Assumption 2. C is bounded, closed, and convex.
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The boundedness assumption is straightforward, under which SC(r, b) < ∞. Closeness of

the set C means that for any unattainable combination (π0, π) (falling in the complement of C,

an open set), a small neighbor of this combined position is still infeasible for the arbitrageurs

to take on: unachievable positions do not suddenly become feasible. Convexity of C means

that convex combinations of feasible position pairs are still available to the arbitrageurs.

Assumption 3. “Going all in” on the risk-free asset is allowed for the arbitrageurs, that is,

(1, 0) ∈ C.

From this assumption, we have SC(r, b) ≥ r, the optimal return per unit of savings

invested is at least r. Thus, taking advantage of arbitrage opportunities benefits the arbi-

trageurs, although this activity may require inefficient storage of arbitrage capital.

Assumption 4. When the arbitrage yield b equals zero, the arbitrage position is zero, that

is, π(0) = 0.

This is a behavioral assumption about the arbitrageurs. When b = 0, the total arbitrage

profit is always zero and arbitrage positions π can take any value. Assumption 4 restricts

the positions to zero. We can interpret this assumption as arbitrageurs regard the riskless

arbitrage opportunity as simply nonexistent whenever its yield equals zero.

Three examples illustrate the set C under these assumptions and characterize arbi-

trageurs’ optimal choices.

Example 1 (Margin requirements). Margin requirements as highlighted in Gârleanu

and Pedersen (2011) can prevent arbitrageurs from building up a large derivative position

to “arbitrage away” the opportunities such as CIP deviations. Following their convention (of

symmetric margins14), I let C be {0 ≤ π0 ≤ 1, π ∈ R : π0 +m|π| ≤ 1}. Under this specifica-

tion, arbitrageurs need to post collaterals into margin accounts for their derivative positions:

for one unit increase in the notional value, m units of capital are occupied, thus not available

14Extending the characterization to asymmetric margin requirements changes the constrain to π0 +
m+π+ + m−π− ≤ 1 where m+ and m− apply to long (π+) and short (π−) legs of derivative contracts
respectively.
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for investing in the risk-free asset.15 With margin requirements, the arbitrage position is

π(b) =
sgn(b)

m
I{|b|≥mr}.

16

Arbitrageurs behave in an “all-or-nothing” manner: they remain inactive when the arbitrage

yield is small; otherwise, they build arbitrage positions to the fullest capacity. Panel (A) of

Figure 1 shows the shape of C and plots π(b).

Example 2 (Costs and adjustments). Now consider the case that a total arbitrage

position of value πs will incur a cost or adjustment of C(πs, s).17 Adopting a standard

specification for adjustment cost functions in investment theory (e.g., Hayashi (1982)), I

assume C(πs, s) = c(π)s, that is, the cost function is (positively) homogeneous of degree

one. As a result, the budget constraint (3) is now k′ = s [1 + π0r + πb− c(π)]. Define

π̂0 = π0 − c(π)/r, the optimization problem of (9) becomes maximizing π̂0r + πb subject

to the condition that C = {0 ≤ π̂0 ≤ 1, π ∈ R : π̂0 + c(π)/r ≤ 1}. To make it more specific,

I let the function c(π) be quadratic with regard to |π|, that is, c(π) = G|π| + (1/2)gπ2

(G ≥ 0, g ≥ 0). I present C and the optimal arbitrage position π(b) in Panel (B) of Figure

1 under this specification. Similar to margin requirements, there is still a region of inaction

for the arbitrageurs: they do not respond when |b| < G. However, when arbitrage yields

are moderately large, that is, when |b| is greater than G but still smaller than
√

G2 + 2gr,

arbitragers gradually increase their positions, until exhausting all their capital. Clearly, if

g = 0, meaning that the quadratic term (1/2)gπ2 disappears from the cost function c(π),

this example collapses to the one under margin requirements where m = G/r.

Example 3 (Value-at-Risk constraints). Another family of constraints arbitrageurs

can face result from Value-at-Risk (VaR) calculations as highlighted by Adrian and Shin

15An implicit assumption here is that capital posted in the margin account are “stored” using the one-to-
one storage technology. In practice, money in the margin account earns interest. Then we could interpret
this implicit assumption as a normalization argument, that is, all prices r and b will be normalized by the
margin account compensation rate.

16The signum function sgn(b) equals −1 when b < 0, 0 when b = 0, and 1 when b > 0.
17In a standard (I,K) type of investment theory presented as early as by Lucas (1967), adjustment costs

are relate to both the investment I (πs here) and the capital stock K (s here). This is because the relative size
of I given K may help determine the cost. The costs or adjustments may be due to funding value adjustments
as demonstrated in Andersen, Duffie, and Song (2019), which is an implicit debt-overhang cost to equity
holders. Arbitrageurs’ effective funding costs and (opportunity) costs of collaterals for different currency
pairs may also render CIP arbitrage less profitable (Augustin, Chernov, Schmid, and Song, 2020). And, as
many may argue, counterparty credit risk adjustments may also plague the seemingly riskless CIP arbitrage,
for most currency derivatives are not centrally cleared (though unfavorable evidence provided in Du, Tepper,
and Verdelhan (2018)). The cost function here can also be interpreted as (credit) risk adjustments.
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(2014) in the study of bank leverage. Under this rule, arbitrageurs need enough equity cap-

ital to cover their VaRα, defined as inf {V > 0 : P [change in asset value ≤ −V ] ≤ 1− α},
based on a pre-specified small threshold α. Arbitrageurs adjust their investment positions

to abide by the rule. As an illustration, I consider a simple Gaussian VaR setting, under

which changes in r and b are both normal; for simplicity, I further assume that these changes

are independent. In summary, ∆r ∼ N (µ∆r, σ∆r), ∆b ∼ N (µ∆b, σ∆b) and ∆r ⊥ ∆b.

Under this setting, VaRα = z(1−α)

√
π2
0s

2σ2
∆r + π2s2σ2

∆b, where σ∆r and σ∆b can be cali-

brated from historical data, z(1−α) is the [100(1 − α)]th percentile of the standard normal

distribution. Thus the VaR constraint VaRα ≤ s yields z2(1−α) (σ
2
∆rπ

2
0 + σ2

∆bπ
2) ≤ 1. As a

normalization, we can let z2(1−α)σ
2
∆r = 1 and define v = σ∆b/σ∆r, then the set C becomes

{0 ≤ π0 ≤ 1, π ∈ R : π2
0 + v2π2 ≤ 1}. Under this VaR constraint, arbitrageurs choose their

arbitrage positions

π(b) =
b

v
√
r2v2 + b2

.

This setting features smooth arbitrage responses to the magnitude of arbitrage yeilds, in

sharp contrast to the outcomes under margin requirements. Panel (C) of Figure 1 illustrates

the set C as well as the function π(b).

Panel (D) of Figure 1 compares the arbitrage profit function SC for the three examples. Of

note, SC is positively homogeneous of degree one (e.g., Molchanov and Molinari (2018, p. 75)),

thus the plot shows SC(1, b/r) as a function of b/r for cleaner demonstration. SC(1, b/r)

reaches its minimum value of one at b = 0. This is when the arbitrage opportunity does not

exist, so the investment return must be r. When |b| deviates from zero, SC(1, b/r) will never

decrease.

The three special cases of C exemplify the benefits of developing a theory without taking a

strong stand on the form of the constraint. Different shapes of C lead to distinctive arbitrage

responses, which translate into peculiar (in)elasticities of π(b), the supply of forward dollars.

From equation (7), equilibrium arbitrage yields thus differ. I summary theoretical results

based on this agnostic view of arbitrage limits in propositions below.

Proposition 1. The optimal behavior of arbitrageurs imposes the following equilibrium con-

ditions:
1

1 + ρ

(
y′

y

)−1

[1 + SC(r, b)] = 1

15



π0

π

C
b

π(b)

π0

π

C
b

π(b)

(A) Margin requirement: set C and position π (B) Cost and adjustment: set C and position π
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SC (1, b/r)
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(C) VaR constraint: set C and position π (D) Arbitrage profit function

Figure 1: Examples of arbitrage constraints C, arbitrage positions, and arbitrageurs’ opti-
mal investment returns.

for their consumption growth (the Euler equation) and

1

r

(
k′ − k

k

)
=

(
1

2 + ρ

)
SC

(
1,

b

r

)
−
(
1 + ρ

2 + ρ

)
1

r

for their capital accumulation. All else equal, the net return on arbitrageurs’ capital [(k′ −
k)/k]: i. increases in |b|;18 ii. is a convex function of b.

The consumption Euler equation is standard under the log utility, in which (1+SC) acts

as the return on intertemporal savings. Motivated by this equation, we can conceptualize

arbitrageurs’ decision problem as a two-stage one: they first optimize π0r+πb subject to the

constraint (8), which gives the optimal return SC; next, they choose their consumption plan

y (and thus s, k′, and y′) according to the Euler equation, taking SC as given. Arbitrage

limits only prevent them from responding insatiably to arbitrage profits. Their intertemporal

18Strictly speaking, all increasing or decreasing statements henceforward refer to nondecreasing or nonin-
creasing respectively. I avoid invoking the latter terms for conceptual simplicity, disregarding mathematical
rigor.
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saving behavior remains optimal under any predetermined position constraints.

Specifications of C directly affects how arbitrageurs’ capital accumulation responds to

arbitrage yields. For example, under VaR constraints, a nonzero b lifts arbitrageurs’ invest-

ment return above r, regardless how small |b| is. However, with margin requirements, there

exists a region around zero, within which no value of b increases the arbitrageurs’ investment

return.

Now we turn to optimal arbitrage positions and the equilibrium arbitrage yield. The

proposition below summarizes the results.

Proposition 2. If C is such that the support function SC is differentiable, the arbitrageurs’

optimal arbitrage positions are

π(b) =
∂SC(r, b)

∂b
.

Furthermore, if C is such that SC is twice differentiable, the equilibrium deviation b∗ that

solves π(b)s = q(b) uniquely exists and

i. if γ0 ≥ 0, 0 ≤ b∗ ≤ γ0/γ and q(b∗) ≥ 0; otherwise, γ0/γ ≤ b∗ ≤ 0 and q(b∗) ≤ 0;

ii. |b∗| decreases as the arbitrageurs’ initial capital k increases.

From Proposition 2, we know that optimal arbitrage positions can be derived from the

arbitrage profit function SC.19 This function SC, on the other hand, reflects how arbitrageurs’

investment return responds to arbitrage yields (Proposition 1). These observations lay foun-

dations for identifying the forward dollar supply by the arbitrageurs. If we can measure the

capital return (k′ − k)/k, a nonparametric regression of this return on the arbitrage yield

(e.g., CIP deviations) reveals the SC, which in turn gives us π(b). We will revisit this idea

later in the full quantitative model in Section 3.

The sign of equilibrium deviations is determined only by the hedgers’ demand q(b).

Negative CIP deviations indicate that there is a net demand for foreign currencies (q(b) < 0)

while positive deviations imply a net demand for dollars (q(b) > 0), in currency forwards and

swaps markets. The largest possible absolute deviation in equilibrium |b∗| is always less than

|γ0|/γ, which is the outcome when no arbitrage force exists to absorb the hedging demand

imbalances. In this equilibrium, b∗ is such that q = 0.

19At points that the partial derivative ∂SC(r, b)/∂b is not well-defined, indeterminacy can arise and π(b)
falls into a closed convex set, namely the subdifferential of SC . See Bertsekas (2009, p. 182-186) for further
expositions.
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The log-utility assumption brings up wealth effects, thus arbitrageurs’ capital k have

major impacts on their absolute arbitrage positions, which equals πs.20 Larger capital stock

increases arbitrage capacity, leading to smaller arbitrage yields in equilibrium.

3 A quantitative equilibrium model of limited arbitrage

In this section, I develop a quantitative model of limited arbitrage in currency market by

enriching the simple model of Section 2. The extension comes from four dimensions: (i) a

risky project is now available to the arbitrageurs; (ii) multiple (instead of only one) riskless

arbitrage opportunities exist; (iii) the model is dynamic in which arbitrageurs optimize

their discounted life-time utility; (iv) time-varying external hedging demand exists for each

arbitrage opportunity. The risky project and random hedging demands make the model

stochastic. I characterize equilibrium outcomes of the model, test their predictions, and use

the equilibrium conditions to estimate the model.

3.1 Model setup

Time is continuous, going from zero to infinity. As before, there are two groups of agents:

arbitrageurs and hedgers, both of a continuum of mass one.

Of note, throughout the rest of the paper, I will omit the time subscripts whenever it

does not cause confusion.

Arbitrageurs. Arbitrageurs maximize a utility function

Et

[∫ ∞

0

e−ρs log (yt+s) ds

]
, (10)

in which ρ > 0 is the instantaneous time discount rate, and yt is their rate of consumption

at date t. At date 0, they are endowed with k0 > 0 amount of capital.

As before, with date-t capital kt at hand, arbitrageurs can borrow or save at a risk-free

rate rt, or safely store their capital (with zero net return). They can also profit from multiple

riskless arbitrage opportunities, yielding at rate bit, i = 1, . . . , n (n ≥ 1), per unit of position

they build up. In currency markets, these arbitrage yields are CIP deviations for different

20As shown in the Appendix, in equilibrium, arbitrageurs’ savings s is proportional to their initial capital
endowment k, due to the log-utility assumption.
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(A) Without arbitrage positions (B) With arbitrage positions
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π0(w − 1)kπ0wk
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L

Figure 2: Arbitrageurs’ balance sheet with and without arbitrage positions (A: asset, L:
liability).

currencies.

Arbitrageurs now have access to a risky project, the net return of which follows a diffusion

process dr̃t = (µtdt+ σtdzt) where {zt}∞t=0 is a standard Brownian motion on a complete

probability space. In other words, the date-t expected rate of return of this risky project is

µt and its volatility being σt. In the context of currency markets, large dealer banks play

an essential role in FX arbitrage. If we treat them as the arbitrageurs, this risky project

represents the a consolidated portfolio of their business activities (e.g., consumer financing,

commercial banking, investment banking, security brokerage and trading, asset management,

etc.), in addition to FX arbitrage.

Capital accumulation without arbitrage opportunities. Ignoring the arbitrage

opportunities for now, with date-t capital kt, arbitrageurs choose their positions in the risk

project and the risk-free asset. Denote by wt the ratio of risky project investments to total

capital, their investment return within the time interval [t, t+ dt] is

dr(wt) = wt(dr̃t) + (1− wt)(rtdt),

where dr̃t = (µtdt+ σtdzt) by assumption. Their capital evolves according to kt+dt = kt[1 +

dr(wt)]− ytdt, that is,

dk

k
= rdt+ w(µ− r)dt+ wσdz − y

k
dt.
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Following the literature (e.g., He and Krishnamurthy (2013); Brunnermeier and Sannikov

(2014)), I expect wt > 1, which means arbitrageurs build up leveraged positions in the risky

project, funded by risk-free debt. Their balance sheet is illustrated in Panel (A) of Figure 2.

Capital accumulation with arbitrage opportunities. With arbitrage opportunities,

arbitrageurs’ date-t problem can be thought of as making two sets of decisions. On the one

hand, they choose the amount of capital, denoted by π0tkt (π0 ≤ 1), to support their “normal

lines of business”, that is, borrowing at the risk-free rate and making leveraged investment in

the risky project. This investment, costing π0tkt initially, leads to π0tkt[1+dr(wt)] amount of

capital at date (t+dt), where dr(wt) follows the same definition above. The risk exposure wt

is chosen optimally under the standard risk-return trade-off. On the other hand, arbitrageurs

also decide the size of arbitrage positions relative to their capital, denoted by the vector

πt = (π1t, . . . , πnt)
⊤, for each of the n arbitrage opportunities. Total arbitrage profits at

date (t + dt) are (
∑n

i=1 πitbitdt) kt, or (π⊤
t btdt)kt for simplicity, where bt = (b1t, . . . , bnt)

⊤.

These arbitrage profits come at zero cost at date-t. We can write down arbitrageurs’ total

capital at date (t+ dt) as

kt+dt = kt + π0tkt[1 + dr(wt)]− π0tkt + (π⊤
t btdt)kt − 0− ytdt,

which extends equation (3) under the new dynamic stochastic environment with multiple

arbitrage opportunities. Simplifying the equation above, arbitrageurs’ capital evolves ac-

cording to

dk

k
= π0 [rdt+ w(µ− r)dt+ wσdz] + π⊤bdt− y

k
dt. (11)

Panel (B) of Figure 2 illustrates the structure of arbitrageurs’ balance sheet after building

up arbitrage positions. Their original balance-sheet composition are colored in blue and ar-

bitrage positions are colored in red. Taking advantage of arbitrage opportunities potentially

leads to downsizing the normal business. In doing so, arbitrageurs are effectively setting a

fraction (1− π0) of their capital aside in storage, earning zero net returns. We can also view

this amount of capital as necessary capital buffers to support arbitrage positions (thus also

colored in red). In the context of major FX dealer banks, (1−π0)k represents the amount of

bank capital deployed to their trading desks dedicated to CIP arbitrage. The choice regard-

ing π0 can also be interpreted as resource allocation decisions in internal capital markets.
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To sum up, arbitrageurs now choose i. π0 that determines the size of their “conventional”

investment as well as its leverage w, ii. arbitrage positions π in each of the arbitrage

opportunities, iii. consumption rate y, to maximize their utility (10) subject to the capital

accumulation equation (11).

Without arbitrage limits, arbitrageurs will choose π0 = 1 and |πi| → ∞ for any i ∈
{1, . . . , n} such that bi ̸= 0.

Arbitrage limits arise from financial constraints defined by the set C. Combinations of π0

and π must fall within C. Arbitrageurs face the trade-off between chasing larger arbitrage

profits and downsizing their normal business operations, under this constraint. Extending

equation (9), the arbitrage profit function (the support function of C) is now defined as

SC(r, b) = sup
(π0,π)∈C

{π0r + π
⊤b}.

Time-varying financial constraint. I allow for time variation in the set C to reflect

changing financial constraints. Specifically, I assume

(π0t, πt) ∈ Ct. (12)

Arbitrage profit functions can be defined for each Ct accordingly.

I collect assumptions in the previous section about the constraint set and present a

summarized one below:

Assumption 5. At any time t, Ct is a bounded, closed and convex subset of [0, 1] × Rn,

which is nonempty with (1,0n) ∈ Ct; the arbitrage position πit = 0 when bit = 0.

Hedgers. I extend the hedging demand specification of (5) to each of the n arbitrage

opportunities by assuming

qt = γ0,t − γbt, γ > 0, (13)

where elements in qt = (q1t, . . . , qnt)
⊤ are external (net) hedging demands. Following the

interpretations in Section 2 in the context of CIP arbitrage, qit represents the demand for

forward dollars via the exchange of currency i. The vector γ0,t = (γ01,t, . . . , γ0n,t)
⊤ captures

the fundamental hedging demand differences among currencies, due to trade imbalances or

cross-border investment. The positive scaler γ indicates that hedging demands for forward
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dollars are always decreasing in the CIP deviations. Appendix C further discusses micro-

foundation of this specification.

The equilibrium arbitrage yield. At time t, the equilibrium arbitrage yield b∗t is a

vector such that

πtkt = qt. (14)

where qt is defined by (13); πt are (part of) the solutions to the arbitrageurs’ problem: choos-

ing {yt, wt, π0t, πt} to maximize the utility function (10) subject to the capital accumulation

equation (11) under the constraint (12).21

Before characterizing equilibrium outcomes, I add three remarks to finish describing the

model setup. First, the model does not consider risky arbitrage. As a result, it is not suit-

able for investigating many intriguing pricing phenomena such as stock market anomalies.

For CIP arbitrage, instead of treating it as risky payoffs, standard practices apply valu-

ation adjustments, modify margin requirements, or resort to VaR calculations to address

risk-related concerns (e.g., the counterparty risk and the mark-to-market valuation risk).

Financial constraints Ct in the current model encompass these scenarios, as illustrated by

examples discussed in the previous section. In addition, CIP arbitrage does not involve con-

vergence trading and is not subject to the (endogenous) risk induced by random arbitrage

horizons in models such as Kondor (2009). Thus, this riskless arbitrage model tends to be a

good fit for studying CIP deviations and other “near-arbitrage” bases, such as the positive

gap between the interest on excess reserve rate and the reverse repo rate.

Second, the log-utility assumption, although inducing myopic behaviors, is not restrictive

for analyzing riskless arbitrage. The intuition is that arbitrageurs cannot exploit riskless ar-

bitrage opportunities to hedge against future shocks to their assets and financial constraints.

In other words, they only adjust arbitrage positions in response to contemporaneous shocks.

On the other hand, arbitrageurs do adjust risk exposures through their positions on the risky

project, taking into consideration their changing investment opportunities. Appendix A.3

presents and characterizes equilibrium outcomes of the same model under general CRRA

utility specifications to clarify these points.

Third, the risky project in the model prevents us from carrying over model solutions

21Assumption A.1 in Appendix A.3 summarizes additional technical assumptions regarding investment
opportunities (rt, µt, σt), financial constraints Ct, and external hedging demands γ0,t.
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of Section 2 directly. To see this more clearly, in equation (4) of the previous section,

arbitrageurs’ log investment return is log(1 + π0r+ πb). Maximizing it under the constraint

(π0, π) ∈ C, it is almost trivial to see that, in equilibrium, π0r + πb = SC(r, b). Under the

full model here, arbitrageurs’ instantaneous (expected) log investment return is E log[1 +

π0dr(w) + π
⊤bdt] (ignoring consumption, long-horizon log investors effectively maximize

expected log returns period by period). Maximizing it under the constraint (12) is not

straightforward. I develop theoretical tools to solve this type of problems building on the

concept of convex conjugacy (also see Appendix A.3 for details). These tools also apply to

the “true” dynamic setting under CRRA utilities. As a preview, the results are surprisingly

simple: a multivariate generalization π0r+π
⊤b = SC(r, b) still holds in equilibrium and risk

exposures of arbitrageurs are adjusted through changing w (although π0 also affects the size

of their risky positions, it is completely pinned down by C).

3.2 Equilibrium characterization

This section characterizes the equilibrium outcomes. I first present arbitrageurs’ optimal

choices and their capital dynamics in equilibrium. Then I show the equation that equilibrium

arbitrage yields must satisfy and analyze its properties. Again, most time subscripts are

suppressed.

Recall that arbitrageurs’ choice variables include their consumption rate y, the amount

of capital used for their “standard business” π0, their risky asset weight w, and the vector

π determining their arbitrage positions. I start presenting their choices of π0 and π in the

following proposition.

Proposition 3. If C is such that SC is differentiable, equilibrium arbitrage positions are

given by

πi =
∂SC(r, b)

∂bi
, for all i = 1, . . . , n.

In equilibrium, the fraction of capital maintained for investment opportunities other than

arbitrage is given by

π0 =
∂SC(r, b)

∂r
.

Optimal arbitrage positions are not affected by the profile of the risky project (i.e., its risk

and return captured by µ and σ), but determined fully by the risk-free rate r in combination

with arbitrage yields b. The shape of C determines the specific functional form of π with
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regard to “prices” (r, b) via the arbitrage profit function SC. Examples of this function are

available in Figure 1 discussed in the previous section.

According to Proposition 3, arbitrageurs have to set aside (1− ∂SC(r, b)/∂r) fraction of

their total equity capital to support their optimal choice of arbitrage positions. This choice is

again not affected by the risk and return characteristics defined by µ and σ. The remaining

fraction will be used for building up risky asset positions of size w(∂SC(r, b)/∂r).

In Appendix A.3, I show that the optimal π0 and π given by Proposition 3 do not change

for general CRRA utility functions. Proposition 4 below provides arbitrageurs’ optimal

choices of y and w. Its generalization for CRRA utility functions yields more complicated

results, which are provide in Proposition A.1 of Appendix A.3.

Proposition 4. In equilibrium, arbitrageurs’ optimal rate of consumption y is such that

y = ρk; their position on the risky project π0w equals (µ− r)/σ2, that is,

w =
µ− r

σ2

(
∂SC(r, b)

∂r

)−1

.

Arbitrageurs’ choice of total risky asset exposure (π0w) exhibits the behavior of classical

“Mertonian” demand (Merton, 1973).22 The rate of consumption y = ρk is a standard result

under the log utility.23 We can always interpret their choices as a two-stage sequence. First,

given the “price vector” (r, b) and knowing their constraints C, arbitrageurs nail down the size

of their arbitrage positions π and set aside (1− π0) fraction of their total capital in support

of these arbitrage activities. Second, with the remaining π0k amount of capital ready for

use, arbitrageurs solve the standard consumption-saving problem with assets defined by the

triplet (r, µ, σ).

I now present the dynamics of arbitrageurs’ capital in equilibrium, which serves as the

key identifying equation for quantitative analysis.

Proposition 5. In equilibrium, the arbitrageurs’ capital evolves according to the following

22Under the current log utility case, this quantity equals the myopic mean-variance efficient demand
(µ − r)/σ2 (Proposition 4 above). In Proposition A.1 of the Appendix A.3, I extend the result for general
CRRA utilities which account for both intertemporal hedging and endogenous dynamic risk aversion. Its
form still complies with the “Mertonian” demands under intertemporal settings.

23For general CRRA utilities, the equilibrium ratio y/k varies according to the state of the economy.
Proposition A.1 of the Appendix A.3 presents the general result.
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rule:

dk

k
=
[
SC(r, b)− ρ+ λ2

]
dt+ λdz, (15)

where λ = (µ− r)/σ is the Sharpe ratio of the risky project available to arbitrageurs.

Proposition 5 allows for intuitive interpretations. To see this, plugging the two equilib-

rium conditions y = ρk and π0w = λ/σ from Proposition 4 into the budget constraint (11),

we have
dk

k
=
[ (

π0r + π
⊤b
)
− ρ+ λ2

]
dt+ λdz.

Comparing the equation above with equation (15) in Proposition 5, we can see that, the

equilibrium π0 and π are such that

π0r + π
⊤b = SC(r, b).

The result indicates that when solving the infinite horizon optimization problem, arbitrageurs

still behave as if they were solving the simple problem of maximizing (π0r + π
⊤b) subject

to (π0, π) ∈ C, when choosing π0 and π each period. This optimization problem is a

multivariate extension of solutions to the simple model presented in Section 2 in which only

one arbitrage opportunity exists.

Another way of looking at the dynamics of arbitrageurs’ capital is through the view

of Euler equations or, equivalently, stochastic discount factors (SDF). Let us define Λt =

e−ρt/yt. Then, under the log utility, optimal intertemporal choices of the arbitrageurs enforce

that dΛ/Λ is an SDF, pricing the risky asset(s) available to them. As y = ρk, Λt = e−ρt/(ρyt),

Proposition 5 indicates that
dΛ

Λ
= −SC(r, b)dt− λdz.

The risk premium of the risky project (µ − r)dt equals E[(−dΛ/Λ)dr̃], the opposite of its

return covariance with this specific SDF defined by the consumption (or capital) of the arbi-

trageurs. In other words, the consumption Euler equation holds in the model. Constraints

on the arbitrage positions do not render arbitrageurs’ intertemporal consumption and port-

folio choice suboptimal. When b is a vector of zeros, that is, no arbitrage opportunity exists,

SC(r, b) = r.24 The SDF takes the conventional form of (−rdt − λdz) in continuous time.

24Recall that Assumption 5 requires C ⊂ [0, 1]× Rn, under which π0 is always smaller than one.

25



Riskless arbitrage opportunities effectively serve as a “booster technology” to ramp up the

risk-free rate available to the arbitrageurs.

The next proposition shows the system of equations determining the equilibrium level of

arbitrage yields. It also discusses sufficient conditions for the existence and uniqueness of

the equilibrium.

Proposition 6. The equilibrium arbitrage yields b under (14) solves

∂SC(r, b)

∂b
k = γ0 − γb. (16)

If the scalar γ > 0 and the set C satisfying Assumption 5 also guarantees that the arbitrage

profit function SC is twice continuously differentiable, a unique solution exists in a ball in Rn

centered at zero with a radius ∥γ0∥2/γ.25

Proof of existence relies on verifying sufficient conditions for the Brouwer fixed-point

theorem; uniqueness is a result of the implicit function theorem. Appendix A.3 contains

details of the proof. The radius ∥γ0∥2/γ corresponds to the norm of arbitrage yields without

arbitrageurs, that is, when b = γ0/γ. Under this scenario, the vector b adjusts such that

all hedging demand imbalances equal zero. Arbitrageurs help reduce the overall equilibrium

arbitrage yields in the sense that their norms become smaller than ∥γ0∥2/γ. Arbitrage

forces dampen the influences of the “raw hedging demands” γ0 (hedging demands when no

CIP deviations exist) on b: the response of equilibrium b to changes in γ0 is less than 1/γ

whenever there are arbitrageurs taking advantage of the arbitrage opportunities induced by

demand imbalances.

25Of note, C, γ0, k and r all vary across time in the model. The equilibrium condition holds one by
one at each time point. The existence and uniqueness results thus apply only to each time period for a
given collection of {C, γ0, k, r}. The proposition is silent on the Markovian equilibrium under which we are
interested in the property of a mapping from the state of the economy to equilibrium arbitrage yeilds b such
that the equation in this proposition always holds. I leave this exploration for future research.
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4 Empirics: testing model predictions and estimating the

model

4.1 Data

Beyond CIP deviation measures described early on, I assemble data from several other

sources. I collect the trade-weighted broad dollar index, the VIX index, Fed fund rates,

treasury yields, euro implied volatilities (CBOE EuroCurrency ETF Volatility Index) from

Federal Reserve Economic Data (FRED). I download the yield curve of RefCorp strips from

Bloomberg (for calculating the dollar convenience yields following Longstaff (2004)).

I also collect bilateral trade data from IMF Direction of Trade Statistics; bilateral port-

folio transaction data as well as cross-border bank claim data from the US Treasury Inter-

national Capital (TIC) System; bilateral foreign direct investment data from the US Bureau

of Economic Analysis.

I create a measure of arbitrageurs’ capital in currency markets. It is motivated by the

fact that these markets are predominantly dealer-intermediated. I consider 49 global dealer

banks which are participants of semi-annual foreign exchange turnover surveys (FXS) by local

monetary authorities in New York, London, Tokyo, Toronto, Sydney, Singapore, and Hong

Kong. Table A1 of Appendix D lists names of their holding companies. The equity capital

of these dealer banks’ holding companies is my intended measure of arbitrageurs’ capital.

Their fundamental and price data come from Compustat and CRSP. I use Bloomberg to

access their five-year credit default swap (CDS) rates.

4.2 Supporting evidence of the model

Without committing to specific financial constraints, the model still yields a strong predic-

tion: an increasing arbitrage yield (e.g., the CIP deviation) should predict higher returns on

arbitrageurs’ capital, and as the former goes up, the latter should go up increasingly fast (a

convex relationship). The equilibrium outcome stated in equation (15) illustrates this point.

On the left-hand side of this equation are arbitrageurs’ capital returns next period, and on

the right-hand, the function SC, which is increasing and convex in b, the arbitrage yields. It

is worthwhile reiterating that the convexity of this function is a direct result of Assumption

6 that C is always convex.
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4.2.1 Arbitrageurs’ capital returns in currency markets

The most direct measure of the 49 FX dealer banks’ equity capital is the book equity (BE)

of their holding companies. As suggested by the theory, if these banks are indeed the ar-

bitrageurs of FX derivatives markets, CIP deviations should predict returns on their equity

capital. I compute for each bank their book equity returns (growth of book equities next

quarter divided by present book equity levels) and estimate the following panel regressions:

1

τ
returni,t+τ = αi + β bt + ϵi,t+τ ,

where returns on the left hand side are annualized by dividing τ = 0.25 (a quarter), the

subscript i denotes banks and t stands for quarters. The independent variable bt is the cross-

sectional average of absolute one-year basis swap rates for EUR, JPY, GBP, AUD, CAD, and

CHF (namely, the G6 currencies) against the dollar. Sample periods begin from March 2009

and end at December 2019.26 The first two columns in Table 2 show the regression results.

Overall, average CIP deviations significantly predict these banks’ book equity growth: one

standard deviation increase in the deviations is associated with around 1.6 percentage points

increase in FX dealer banks’ book equity. This finding is robust to measurements of CIP

deviations using either the currency swap rates or the forward-OIS implied basis.

There is a major drawback in using the book equity measure: it is an accounting variable

that is observable only quarterly. This drawback will become more pronounced as later

model testing and estimation include nonparametric procedures. To circumvent this issue,

a the potential surrogate measure, the market equity (ME), becomes particularly attractive.

This measure comes from high quality real-time market price data. It is also worthwhile

noting that, for the 49 FX dealer banks under study, their average and median market-to-

book (MB) ratios equal 1.10 and 1.05 respectively (during the sample period of 2009-2019).27

The time-series standard deviation of market-to-book ratios averaged across these banks is

0.13. These features partially motivate the use of market equity.

An additional motivation for using the market equity measure (at least in the context

26I use this sample period to avoid tumultuous periods of the global financial crisis and the COVID-19
pandemic.

27Market-to-book ratios of bank equities are around one not only during the post crisis period under
study. In fact, these ratios have been close to one until the mid 1990s. During the exceptional period of
1996-2008, MB ratios of banks were over two. Explanations to these patterns are beyond the scope of this
paper. Interested readers may refer to papers such as Calomiris and Nissim (2014); Atkeson et al. (2019).
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of testing the predictive relationship here) is the fact that CIP deviations do not predict

changes in the market-to-book ratios. As the equation

BEt+1

BEt

× MBt+1

MBt

=
MEt+1

MEt

holds by definition, if a predictor does not predict the ratio MBt+1/MBt which stands for

“returns” on the book-to-market ratio, it must simultaneously predict (or fail to predict) book

and market equity returns. The third and fourth columns of Table 2 verify this conclusion by

regressing (MBt+1/MBt − 1) on bt. The slope coefficients are statistically indistinguishable

from zero. Since we have already seen from the same table that bt predict book equity returns

of the 49 FX dealers, this variable should also predict their market equity returns.

Now I redo the panel regression using market equity returns. Both measures of CIP

deviations are considered. For comparison, I still consider quarterly observations of quarterly

returns. The last two columns of Table 2 document the results. Average CIP deviations also

significantly predict these banks’ market equity returns. The slope coefficients are larger:

one standard deviation increase in the deviations is associated with six percentage points

increase in expected market equity returns. The larger regression coefficient (compared with

the case for book equity returns) is mainly due to the fact that market equity returns are

more volatile than book equity returns: annualized time-series volatilities are 28.8% for the

former and 9.8% for the later.

From now on, I will use returns on market equity of the 49 FX dealer banks’ holding

companies to measure arbitrageurs’ capital returns in the model. Using market returns raises

concerns about confounding effects of other return predictors, such as valuations ratios and

volatilities. In the following section, I will further investigate the predictive relationship and

try to mitigate these concerns by adjusting for potential return predictors.

4.2.2 CIP deviations predict arbitrageurs’ capital returns

I document additional evidence on the predictive power of CIP deviations on FX dealer

banks’ capital returns. Columns headed with “FXS” in Table 3 present results from the

following time-series regressions using quarterly observations:

1

τ
returnt+τ = β0 + β bt + ϵt+τ ,
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where the dependent variable is one-quarter-ahead (τ = 0.25) value- or equal-weighted stock

returns of the 49 dealer banks’ holding companies. Returns are annualized by dividing τ .

The independent variable bt is still the cross-sectional average of absolute one-year basis swap

rates of G6 currencies against the dollar. Sample periods begin from March 2009 and end at

December 2019. Regression coefficients are statistically significant in these columns of Table

3. On average, one basis point increase in the average CIP deviations predicts around two

percentage points increase in the returns of arbitrageurs’ capital.

A set of placebo tests are included Table 3. The same predictive regressions are repeated

for returns of five exchange-traded funds (ETFs) tracking the S&P500 index (SPY), the

global financial sector (IXG), the US financial sector (IYF), US broker-dealers and securities

exchanges (IAI), and US insurance companies (KIE). Average CIP deviations do not predict

placebo outcomes, except for returns of the ETF tracking the global financial sector. This

unique positive finding is not surprising as the 49 FX dealer banks are likely to be essential

constituents of the fund. These placebo tests suggest that the 49 global dealer banks under

consideration do play special roles in CIP arbitrage: they tend to be the arbitrageurs both

in my model and in reality.

Table 4 assembles additional results for the same time-series regression using daily and

monthly observations. Regression coefficients are remarkably stable for the main outcome

variable: value-weighted equity returns on the 49 FX dealers banks’ holding companies.

One basis point increase in the average CIP deviations is still associated with around two

percentage point increase in these returns. Placebo test results remain consistently negative

(again, except for the ETF tracking the global financial sector). For monthly observations,

five hedge fund index returns are also included for placebo tests: one global composite index

from BarclaysHedge, four indices from Hedge Fund Research tracking global composite,

relative value arbitrage, global-macro, and macro-currency strategies. CIP deviations do not

predict the composite hedge fund return indices.28

Table 5 presents results from the adjusted version of the predictive regression:

1

τ
returnt+τ = β0 + β bt + ϕ · controlt + ϵt+τ ,

28All results till now focus on quarterly returns. Table A2 in Appendix D also confirms the predictive
relationship (as well as negative results from placebo tests) for monthly returns. The regression coefficients
remain stable (around two) for the main outcome variable, though adjusted R2s drop for monthly returns.
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in which control variables include earnings yields and dividend yields averaged across the 49

FX dealer banks’ holding companies. Quarterly returns are annualized by dividing τ = 0.25.

The effective fed fund rates, as well as the VIX index are also incorporated. Results for

both monthly and daily observations are reported. Average G6 currency CIP deviations

still demonstrate significant predictive power, but the magnitude is reduced by a half after

controlling for the banks’ earnings yields, which also strongly predict the returns. Table

A3 reports results from repeating the same exercise for monthly returns. All results remain

largely unchanged, except for the declined adjusted R2s. To sum up, this set of time-series

regressions suggest that CIP deviations predict arbitrageurs’ capital returns, both before

and after controlling for common return predictors. In addition, banks’ earnings yields also

emerge as an important return predictor.

4.2.3 The predictive relationship is convex

I now further investigate whether the predictive relationship is convex, as suggested by

equation (15) in Proposition (5). As the term SC(r, b) contains both the risk-free rate and

the CIP deviations, I rewrite equation (15) as follows:

1

dt

dk/k

r
= SC

(
1,
b

r

)
− ρ

r
+

λ2

r
+

λdz

dt
,

after dividing both sides by rdt and leveraging the property of SC that it is positively homo-

geneous of degree one. This motivates the following regression specification

1

τ

(
returnt+τ

rt

)
= S0

(
bt
rt

)
+ ϕ · controlt + εt+τ ,

in which rt denotes the risk-free rate; τ = 0.25 denotes the time interval of one quarter;

controls include the reciprocal of rt (as suggested by the theory in which −ρ/r shows up),

the earnings yield that emerges as a strong return predictor in the previous section, as well

as the VIX index; the function S0(·) captures the functional form of SC(1, ·).
To begin with, I contrast the parametric configuration of S0(x) = β0 + βx and S0(x) =

β0+βx2 in Table 6.29 The slope coefficient β is significantly positive only under the quadratic

specification. Estimates of these coefficients are stable across daily and monthly observations.

29I do not incorporate the linear and quadratic terms simultaneously due to the potential multicollinearity
concern: correlation between b/r and (b/r)2 is 0.9 in the sample.
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To mitigate concerns about low risk-free rates creating large dependent variables to the extent

that some may become “outliers”, I redo the same regressions using robust estimators based

on the Huber loss function. Robust estimators confirm that β is only significant under the

quadratic specification, suggesting a convex predictive relationship.

Next, I estimate the equation using semi-parametric techniques. The nonparametric

component S0 is expanded to shape-constrained B-spline basis (Eilers and Marx, 1996).

Table 7 reports the estimation results and tests for the significance of S0(bt/rt) using both

daily and monthly observations. I consider three types of configurations for S0: i. both

convex and increasing (as suggested by theory), ii. only increasing, and iii. no restrictions.

Under all conditions, regression coefficients for 1/rt are significantly negative, as suggest

by the theory. The nonparametric term S0(bt/rt) cannot be ignored. Figure 5 plots the

estimated S0(x) (which equals SC(1, x)) under the three specifications. Convex patterns

consistently show up even without imposing the convexity constraint. A kink exists around

x = 3, before which S0 increases slowly and after which the function shoots up, indicating

substantial arbitrage profits when |b| > 3r. As the median level of r is 16 basis points,

arbitrageurs appear to enjoy large arbitrage profits after CIP deviations exceed 48 basis

points.

This semi-parametric estimation implicitly adopts one crucial assumption: the financial

constraint C does not change across time. Next, I will account for the dynamics of financial

constraints and formally estimate the model.

4.3 Quantitative specifications, identification, and estimation

In this section I enrich the theoretical model presented above with additional assumptions to

map it to data. The main goal is to quantify Ct (financial constraints) and (γ0,t, γ) (hedging

demands and the elasticity parameter) in equation (16) of Proposition 6. To achieve this

goal, I adopt a two-step estimation strategy. First, I estimate Ct using the equilibrium

capital accumulation equation (15). Then, knowing Ct and thus the function SCt , I compute

the equilibrium arbitrage positions on the left hand side of equation (16), and then estimate

hedging demands. I begin with an assumption simplifying the financial constraints.
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(A) baseline (B) time-t financial constraints
constraints i. 0 < αt < 1 ii. αt → 0 iii. αt > 1 iv. α → ∞
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Figure 3: Dissecting the shape and dynamics of financial constraints

4.3.1 Separating shapes and dynamics of financial constraints

Time-varying financial constraints {Ct}t≥0 is a series of sets satisfying Assumption 5. Es-

timating a sequence of random sets is challenging (if not impossible). To make progress, I

adopt a simplifying assumption about the financial constraints by separating their shapes

and dynamics.

Assumption 6. There exists a constant set C0, such that Ct = {(π0, αtπ) : (π0, π) ∈ C0}
for a sequence αt > 0.

This assumption implies that at any time, financial constraints defined by the set Ct is

derived from a “baseline” C0 by shifting the largest possible arbitrage positions. The time

series {αt} serves the role of “shifters”, which captures variation in the financial constraints.

When αt > 1, Ct subsumes the baseline specification C0, larger arbitrage positions become

feasible conditional on the same amount of capital dedicated to arbitrage activities (π0 fixed).

When 0 < αt < 1, Ct shrinks, and arbitrageurs tend to cut back their arbitrage positions.

Under Assumption 6, the shape and dynamics of financial constraints each has a concrete

characterization: the set C0 for the shape and the sequence {αt} for the dynamics. I discuss

this dissection of financial constraints intuitively through Figure 3.30 The first plot to the

left of Figure 3 shows the baseline constraints defined by the set C0. This set determines

the shape of financial constraints. In this illustration, it represents a VaR condition applied

30For the ease of exposition, the illustrations cover the case of one arbitrage opportunity, while the
intuitions easily carry over to higher dimensions.

33



to the arbitrage positions (see examples from the previous section for details). C0 can also

depict other types of constraints or combinations of multiple constraints. The other four

plots in Figure 3 describe how a sequence of sets {Ct} is generated from combining C0 and

{αt}. The time series {αt} translates to the dynamics of financial constraints, according to

Assumption 6. Plot (B)-i. and (B)-iii of Figure 3 illustrate how the financial constraints

become tighter or loser from their baseline level according to the value αt (C0 boundaries

outlined in the dashed curves for comparison). Plot (B)-ii. and (B)-iv of Figure 3 are two

extreme cases. Under the first scenario, αt goes to zero and the set Ct collapses to a line

segment: no arbitrage activities are allowed. All hedging demand imbalances have to be

counterbalanced by large arbitrage yields. Under the second scenario, αt becomes infinitely

large, and the constraints morph into a band spanning to infinity: no limits to arbitrage

exist. This corresponds to the frictionless benchmark, under which CIP deviations must

always be zero.

The arbitrage profit function for time-t financial constraints Ct under Assumption 6 is

given by the following lemma.

Lemma 1. Under Assumption 6, SCt(r, b) = SC0(r, αtb).

Lemma 1 translates Assumption 6 on sets {Ct} into properties of the arbitrage profit

function. The baseline set C0 determines the functional form of SC0 (shape); the series {αt}
induce time variation to the financial constraints, as well as arbitrage profit functions (dy-

namics). Quantifying the financial constraints is equivalent to estimating both the function

SC0 and the sequence αt.

4.3.2 Parameterization

I introduce a simplifying assumption and parameterize three components of the model to

facilitate estimation, summarized by four items in this section.

Item 1: reducing the dimension of financial constraints. I begin by simplifying

the (baseline) shape of financial constraints, defined via the function SC0 . The challenge to

estimate this object comes from the “curse of dimensionality”: as a rule of thumb, estimating

a function of dimension d generally requires a sample size that is an exponential of d (Stone,

1982). I adopt the following simplifying assumption to sidestep this challenge.

Assumption 7. SC0(1, b) = S0(b) where b =
∑n

i=1wi|bi| and
∑n

i=1wi = 1.
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π

Figure 4: The (baseline) financial constraint C0 and its two-dimensional generator C2D
0

under Assumption 7.

Interpretation of the assumption is straightforward. It treats the weighted average of

CIP deviations as a measure of overall arbitrage yields accessible to arbitrageurs. I use

over-the-counter FX derivatives trading volume to construct these weights. The derivatives

include FX forwards, FX swaps, and currency swaps. The trading volume data also come

from semi-annual FX surveys of local monetary authorities in New York, London, Tokyo,

Toronto, Sydney, Singapore, and Hong Kong. Figure A1 in the Appendix plot the volume

shares of G6 currencies and the remainder, beginning from the year 2009. Though I suppress

time subscripts here, these weights can vary across time when used for aggregating CIP

35

https://www.newyorkfed.org/fxc/volumesurvey/data.html
https://www.bankofengland.co.uk/markets/london-foreign-exchange-joint-standing-committee
https://www.fxcomtky.com/survey/index_e.html
https://www.cfec.ca/fx_volume.html
https://afxc.rba.gov.au/statistics/
https://www.sfemc.org/statistics.html
https://www.tma.org.hk/en_market_education.aspx


deviations at different time (at time t, bt =
∑n

i=1 wit|bit|).
Figure 4 demonstrates implications from Assumption 7 in detail. The function S0(x)

defines a support function

SC2D
0
(x, y) = xS0(y/x)

for a set C2D
0 in R2. Combing this two-dimensional set with a vector of weights further

generates the financial constraint C0 in Rn+1. The top plot in Figure 4 illustrates a three-

dimensional set C0, the configuration of which satisfies Assumption 7. The three plots at the

bottom show its intersections with three planes {(π0, π1, π2) : πi = 0}, (i = 0, 1, 2). In the

π0-π1 (sub)space, the intersection is indeed a set defined as {(π0, w1π1) : (π0, π1) ∈ C2D
0 }.

The same rule holds for the intersection in the π0-π2 (sub)space. The weighted average term

in Assumption 7 is reflected directly in the π1-π2 intersection (see the diamond shape in the

plot at the bottom right corner).

Combining Assumption 7 with Lemma 1,

SCt(rt, bt) = SC0(rt, αtbt) = rtSC0

(
1,

αtbt
rt

)
= rtS0

(
αt

bt
rt

)
. (17)

Substituting this result into equation (15), and dividing both sides by rtdt, we have

1

dt

dkt/kt
rt

=

[
S0

(
αt

bt
rt

)
− ρ

rt
+

λ2
t

rt

]
+

λt

rt

dzt
dt

. (18)

I now introduce two additional parameterization schemes for objects in equation (18): the

Shape-ratios of arbitrageurs’ risky project λt and the dynamics of financial constraints αt.

Item 2: parameterizing Shape-ratios. I parametrize the whole term (λ2
t/rt−ρ/rt) as

the linear combination of variables that may predict the arbitrageurs’ capital return dkt/kt

other than the CIP deviations, that is, λ2
t/rt − ρ/rt = ϕ

⊤vt. The vector vt include variables

such as earnings yields for the 49 dealer banks, and the VIX index, which are potential

predictors of the capital return dkt/kt. The reciprocal of rt is also included as suggested by

theory.

Item 3: parameterizing the dynamics of financial constraints. I parameterize

the positive process αt as exp(δ⊤ut) where ut is a vector containing variables that may

drive the time-series variation in financial constraints. It includes the dollar index, quarterly

lagged volatilities of average CIP deviations, changes in dealer banks’ CDS, the TED spread
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(three-month dollar LIBOR rates minus the three-month Treasury bill rates), the implied

volatility of euro, the VIX index, and the dollar convenience yield (the three-month RefCorp

bond yield minus the three-month treasury yield).31

Under these parameterization schemes, we can now write equation (18) as

1

τ

(
returnt+τ

rt

)
=

[
S0

(
exp(δ⊤ut)

bt
rt

)
+ ϕ⊤vt

]
+ εt+τ , (19)

after replacing dt by τ , in which the error term εt+τ are future shocks to arbitrageurs’ capital.

Estimating equation (19) yields the function S0(·) as well as vectors δ and ϕ. According

to equation (17), knowledge regarding the function S0 and the vector δ (which translates

into αt) fully reveals SCt (the arbitrage profit function determined by time-varying financial

constraints). In equilibrium, arbitrage positions can be calculated as

πit =
∂SCt(rt, bt)

∂bit
=

rt∂S0(αtbt/rt)

∂bit
= αtwitsgn(bit)S

′
0

(
αtbt
rt

)
, αt = exp(δ⊤ut). (20)

Now shifting attention to equation (16) and writing it in an element-wise manner, we

have

πitkt = γ0,it − γbit.

The left-hand side of this equation becomes observable if we know S0 and δ, according to

equation (20). I now introduce parameterization for hedging demand intercepts γ0,it on the

right-hand side.

Item 4: parameterizing hedging demands. Hedgers’ demands are further specified

as follows (optimization foundation for the hedging demands in Appendix C helps motivate

the specification):

γ0,it = β
⊤
i xit + ℓit,

where xit is a vector of observable hedging demand drivers including bilateral net exports,

net foreign direct investment flows, net security purchases (long-term bonds and equities),

31The dollar index captures risk-bearing capacity of global banks as argued by Avdjiev, Du, Koch, and Shin
(2019). Past volatilities of CIP deviations may affect VaR calculations involving FX derivatives positions.
Bank CDS rates determine funding value adjustments as illustrate by Andersen, Duffie, and Song (2019).
The TED spread measures credit risk in the banking sector. I add the implied volatility of euro and the
VIX index as additional controls for risk appetite in currency markets and, more broadly, global financial
markets. The measurement of dollar convenience yields follows Longstaff (2004); Augustin et al. (2020) find
that swap dealers’ effective funding rates are related to convenience yields.
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changes in net cross-border bank claims, and interest rate differentials (all calculated as

domestic, the US, minus foreign, country i); an intercept term of constant one is also in-

cluded in xit; ℓit ∼ N (0, σ2
ℓ ) captures unobservable components of hedging demands (or, in

extension, liquidity-driven demands for forward dollars which I do not model explicitly in

the micro-foundation section of Appendix C). This specification implies that

πitkt = β
⊤
i xit − γbit + ℓit

= β
⊤
xit +

n−1∑
j=1

η⊤
j (I[j = i]× xjt)− γbit + ℓit. (21)

The second equation in (21) adopts the transformation βi = β + ηi where
∑n

i=1 ηi = 0. As

a result, the vector β is the cross-sectional average of βi, which accounts for mean responses

of hedging demands to observables in the model for all currencies in the sample. Under this

specification, estimating β1, . . . ,βn is equivalent to estimating β, η1, . . . ,ηn−1.

4.3.3 Identification and estimation

Under the current parameterization scheme, model estimation takes two steps. First, I

estimate equation (19) to find the triplet {S0(·), δ,ϕ)}; these estimates allow me to calculate

arbitrage positions πit according to equation (20). Second, knowing πit as well as kt, I

estimate vectors β1, . . . ,βn and the “semi-elasticity” parameter γ from equation (21).32

Step 1: estimating financial constraints. The first step relies on the following

identification assumption

E [εt+τ | bt, ut, vt] = 0,

in equation (19), which holds according to the theory. Specifically, this condition argues that

the current CIP deviations (bt), dynamics of financial constraints (determined by ut), as well

as drivers of arbitrageurs’ expected capital returns (vt) do not affect shocks to arbitrageurs’

future realized capital returns. This argument does not preclude the possibility that current

(or even past) shocks to arbitrageurs’ capital affect these variables. Arbitrageurs in the

model do respond to contemporaneous shocks and adjust their arbitrage positions. Moreover,

32I call the parameter γ “semi-elasticity” because b is related to logarithms of forward prices F according
to equation 1, the initial definition of CIP deviations. In addition, hedging demands in the model can be
interpreted as forward dollar demands as discussed in Section 2. Of course, (−γ) should be the proper
semi-elasticity.
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since they are global dealer banks, these shocks can even have “real” impacts through trade

finance (Xu, 2020) and cross-border capital flows (Amiti, McGuire, and Weinstein, 2019),

thus affecting the hedging demands. This two-sided influence complicates equilibrium CIP

deviations and can induce co-movement between the arbitrage yields and contemporaneous

shocks to arbitrageurs’ capital. However, these relationships should not apply to future

unexpected shocks, as the identification condition commands.

The identifying condition can be violated if, for example, additional unobservable risk

premium drivers exist. To be more concrete, this corresponds to the case that the ϕ⊤ut

term in equation (19) should in fact be (ϕ⊤ut+ ℓut ) where ℓut is the unobservable component.

This term must be correlated with bt through its impact on kt (recall that bt must solve

the equilibrium condition (16) at time t). Given the fact that powerful return predictors

are usually difficult to find beyond valuation ratios and volatility measures (which I have

included in the vector vt), this concern might not be of primary importance.

The current framework is in fact flexible enough to incorporate additional controls that

drive arbitrageurs’ equity returns. Future research could help improve the current estimation

when new dealer bank equity return predictors are identified, which will be added into the

vector vt.

If a meaningful unobserved risk premium driver does exist, my estimation may exaggerate

the response of arbitrageurs’ capital returns to arbitrage yields. This is because higher ℓut

is equivalent to higher expected capital returns, and is associated with lower current capital

valuations. According to result [ii] of Proposition 2, this leads to higher (absolute) CIP

deviations. In other words, cov(ℓut , bt) > 0. As a result, the estimated response of returns to

CIP deviations will subsume both the direct effects from arbitrage profits and (positively)

confounded effects through ℓut . The escalated level of arbitrage profit functions map to a

more lenient view of financial constraints: all else equal, relaxed financial constraints allows

arbitrageurs to build more aggressive arbitrage positions and reap larger arbitrage profits.

Under such scenario, I interpret my estimates of the financial constraints as conservative

ones (i.e., supersets) that must contain the truth at each time period.

With the identifying condition E [εt+τ | bt, ut, vt] = 0, I estimate equation (19) using

semi-parametric nonlinear least squares. The algorithm for estimating this equation is de-

scribed in Appendix B.

Table 8 reports estimation results from the first step. According to Table 8, increases
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in dollar index, lagged currency swap volatility, and implied volatility of euro are signif-

icantly associated with tightening financial constraints. I also consider equal weighting

(bt =
∑n

i=1 |bit|/n) for robustness and results remain largely unchanged.

I plot in Figure 6 the times series of αt (adjusted by sample mean) based on the estimates

of δ in Table 8 under the volume-weighting scheme. Smaller αt indicates tighter financial

constraints. According to Figure 6, arbitrageurs appear to face toughest constraints during

the year 2015-2016. The sharp tightening begins from the middle of 2014. Perhaps not

coincidentally, the Volcker rule regulating proprietary trading becomes in effect during the

second quarter of 2014. In addition, the supplementary leverage ratio requirement is finalized

during the third quarter of this year. The estimated dynamics of financial constraints seems

to delineate FX Dealer banks’ responses to these regulatory reforms. Another interesting

period is the first quarter of 2017, witnessing extremely tight constraints. It is during the

same quarter that the liquidity coverage ratio (LCR) requirement reaches its full effects.

Step 2: estimating hedging demands. In the second step, I estimate hedging de-

mand parameters. I calculate πit using equation (20) based on estimates of S0(·) and δ from

the first step. Now the goal is to estimate parameters βi and γ in equation (21). Since the

left-hand side of this equation are now observable, a standard panel-data linear regression

can generate estimators for (β1, . . . ,βn, γ). The main issue with this estimation is that un-

observable hedging demands ℓit will affect the equilibrium deviations bit, thus contaminating

the ordinary least-square estimator of γ.

To address this issue, I propose an instrumental variable (IV) for bit based on the following

assumption:

E [ℓit | xi′t] = 0, i′ ̸= i.

This condition states that unobservable hedging demands for a particular currency are not

related to observable hedging demand drivers of other currencies. In other words, bilateral

trade and portfolio flows between the UK and US, which may drive hedging demands for

pounds, should not affect hedging demands for yen. If this condition is satisfied, we can

instrument bit using estimators b̂it from the following (first-stage) regression:

bit = ψ
⊤zit + ϕ

⊤
xit +

n−1∑
j=1

ξ⊤j (I[j = i]× xjt) + eit,
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because the right-hand side instrumental vector zit =
∑

i′ ̸=i wi′tx
(−ι)
i′t is not associated with

ℓit. The weights are calculated from the volume of FX derivatives, which also appear in

Assumption 7 and equation (20). The superscript “(−ι)” for x means that the constant one

for intercepts is excluded from this vector.

This instrument should not be a weak one in theory (ψ ̸= 0), as it directly affects lev-

els of CIP deviations for other currencies (i.e., the vector b−i). Changes to b−i will affect

arbitrageurs’ equilibrium arbitrage positions not only for the involved currencies (π−i), but

also for currency i (πi). If we conceptualize arbitrageurs as “suppliers” of arbitrage services,

this instrument is effectively a supply shifter in the tradition of Berry, Levinsohn, and Pakes

(1995). The volume-weights reflect the belief that demands for derivative contacts on domi-

nant currencies should have larger impacts on arbitrageurs’ optimal positions, transmitting

more pronounced “supply” shocks.

The exclusion restriction of the proposed instruments can be invalid when there are

common shocks to both observable hedging demand drivers x1t, . . . ,xnt, and latent hedging

demands ℓ1t, . . . , ℓnt, thus relating xi′t to ℓit. A necessary outcome of this scenario is that

x1t, . . . ,xnt present a strong factor structure. In the data, leading principle components of

variables in these vectors never explain more than 40% total variation (40% for bilateral net

exports as the highest, 23% for bilateral changes in net bank claims as the lowest). This

exploratory analysis provides suggestive evidence favoring the identification condition.

If the identifying condition is indeed violated, then my estimate of the γ parameter is

likely to be downward biased. Adversarial shocks under tumultuous market conditions sup-

pressing all bilateral trades and portfolio investments (the observables) tend to be associated

with dollar shortages, boosting demands for spot dollars (via synthetic dollar funding) and

dampening the need for forward dollars. If we interpret the unobservables absorbed by ℓ as

forward dollar demands due to liquidity needs, the instrument constructed using x−i will be

positively correlated with ℓi in equation (21): they both drop in bad times. Estimates of

−γ (a negative object in theory) will be inflated by the instrument, which is equivalent to

downward biased γ estimates.

Table 9 reports the second-step demand estimation results. In these estimations, I nor-

malize arbitrageurs’ capital to one at the beginning of the sample (January 2009). The

key parameter of interest is γ. The OLS estimation of γ is negative, suggesting that this

simple approach is mired by unobservable demand drivers. IV estimations yield γ estimates
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of around 1.4. Weak IV test statistics for the first-stage regression exceed theory cutoffs

calculated following Stock and Yogo (2005).

Interpreting the number γ = 1.4 relies on estimates of β, the components of which are

significantly positive for net purchases of long-term securities (only long-term bonds, not

equities) and net exports. This finding itself is intuitive. Higher (US) net exports indicate

that US exporters expect more foreign-currency receivables. To hedge these cash flows

against currency risk, they sell foreign currencies forward in exchange for dollar. As a result,

increased net exports indicate higher forward dollar demands. Similar reasoning apply to

net foreign asset purchases which generate foreign-currency denominated cash flows (and

capital gains) in the future. The coefficient is around five for net long-term bond purchases,

which is 3.6 times of γ. This suggests that one basis point increase in the CIP deviations is

equivalent to 1/3.6 ≈ 0.28 billion decrease in this variable in terms of impacts on hedging

demands. Similarly, the coefficient for net exports is around ten (≈ 7× γ). Thus, one basis

point increase in the CIP deviations tends to have the same impact on hedging demands as

1/7 ≈ 0.14 billion decrease in net exports.33

5 Quantitative Analysis

5.1 Model-implied CIP deviations

With estimates of the function S0(·), αt (determined by the vector δ), γ0,t = [γ01,t, . . . , γ0n,t]
⊤

(each element determined by β1, . . . ,βn respectively), and the parameter γ, the equilibrium

condition (16) becomes a pricing system: at time-t, CIP deviations b solves

rt∂S0

(
αtw

⊤
t b
)

∂b
kt = γ0,t − γb, (22)

where wt contain weights calculated from FX derivatives trading volumes, kt is measured by

market equity of the 49 FX dealer banks. I solve for model-implied b each month from this

equation and compare it with data.

Denote by b̂ the model-implied CIP deviations for a specific currency and by b the true

33Since I do not rule out correlations between xit and ℓit in equation (21), β estimates cannot be treated
as causally identified. These results should be interpreted with caution. Calculation here may be illustrative,
but can at least help better understand the model.
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data (one-year CIP deviations measured using currency swap rates). Figure 7 contrast CIP

deviations solved from equation (22) against data. Overall, the model-implied CIP deviations

track the data well. Panel (A) of Table 10 reports the means and standard deviations of

b and b̂ as well as their correlations. Sample periods are January 2009 to December 2019.

Overall, moments of model-implied CIP deviations closely track ones from the data for G6

currencies.

If we decompose the variance of observed data b as

σ2[b] = cov[b, b] = cov[b, b̂] + cov[b, b− b̂],

the ratio cov[b, b̂]/σ2[b] measures the fraction of total variance in the data that the model

accounts for. This quantity is equivalent to the slope coefficient of the following regression

b̂t = β0 + βbt + εt,

The last two columns of Table 10 report estimates of β in this regression and their standard

errors. For euro, yen, pounds, and Canadian dollars, model-implied CIP deviations account

for at least 57 percent of total variation in the data. For Australian dollar and Swiss Franc,

the model-implied CIP deviations explain over 30 percent of observed variation. The relative

poor performance for CHF is mainly due to low variation in the model-implied quantities.

The correlation between b and b̂ is 0.59 for CHF but the variance of b̂ is 46 percent lower.

Overall, the model explains around 57 percent of variation in one-year CIP deviations of G6

currencies.

Out-of-sample analysis: sample splitting. I repeat the two-step model estimation

exercise using the 2009-2015 subsample, and treat the 2016-2019 subsample as testing data.

Adopting a common “trick” facing the bias-variance trade-off (when performing out-of-sample

prediction tasks), I choose a more parsimonious hedging demand specification, which only

includes net exports and net bond purchases. Using parameters estimated from the first

subsample, I solve for CIP deviations according to equation 22. Figure 8 shows the out-

of-sample prediction results. Levels of predictions align well with the data in the testing

sample.

Out-of-sample analysis: additional currencies. I further check model performance

by applying it to four currencies not used in the first-step model estimation: the Swedish
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krona (SEK), Norwegian krone (NOK), New Zealand dollar (NZD) and Hong Kong dollar

(HKD). As an approximation, when solving for equilibrium CIP deviations from equation

(22) for these new currency pairs, I ignore all off-diagonal elements in the partial differen-

tiation on the left-hand side. I use β estimates from Table 9 to computer their hedging

demands (instead of finding βi for each currency). I compare model outcomes with data in

Figure 9. Although no information regarding these currencies is used for estimation, CIP

deviations solved from the model still align well with data. Panel (B) of Table 10 compares

moments for the model-implied ones with data and repeat the regression analysis above.

The model tracks data moments well. On average, model-implied quantities explain over 30

percent variation in the data.

Restoring CIP deviations back to their pre-crisis levels. With equation (22), we

can investigate counterfactual CIP deviations when arbitrageurs are facing tighter or loser

financial constraints. I conduct this exercise via replacing αt in equation (22) by (cααt)

and resolve for equilibrium CIP deviations. A larger constant cα indicates loser financial

constraints. Table 11 reports time-series average of counterfactual CIP deviations as well

as their standard deviations for different cα. One particularly interesting observation from

Table 11 is that loosening the financial constraints by allowing for 2.5 times larger arbitrage

legs (recalling the illustration in Figure 3) can restore the post-crisis CIP deviations back to

their pre-crisis levels (of around five basis points).

5.2 Shapley-value decomposition of the model-implied CIP devia-

tions

To determine the relative contribution of (the dynamics of) financial constraints (αt), hedg-

ing demands γ0,t, and arbitrageurs’ capital (kt) to time-series variation in CIP deviations,

I adapt a Shapley decomposition (see Shorrocks (2013) for its application in linear models)

to the equilibrium pricing function. For each of the three forces, Shapley decomposition de-

termines its marginal contribution to total variation in model-implied CIP deviations. This

decomposition scheme is especially useful as the three economic forces interact with each

other to determine equilibrium CIP deviations nonlinearly through equation (22). Con-

ceptually, the three economic forces are teammates who cooperate on a task – producing

variation in b. The Shapley decomposition calculates their “wages” for finishing the task in

an efficient, fair, and easy-to-interpret manner.
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I begin by adapting the Shapley decomposition to my equilibrium model. Equation (22)

defines an implicit function b = L(α, k, γ0) that maps the three variables to the equilibrium

CIP deviations. For variable v ∈ {α, k, γ0}, I compute

Iv =
∑

V⊂{α,k,γ0}\{v}

|V |
6

{
σ2[L(V, v)]− σ2[L(V, v)]

}
,

where σ2[L(V, v)] denotes the variance of counterfactual CIP deviations calculated from

the implicit function, holding {αt, kt, γ0,t}\{V, v} constant (as its sample average) while

allowing both v and variables in V to vary; σ2[L(V, v)] denotes the variance calculated

similarly holding both {αt, kt, γ0,t}\{V, v} and the variable of interest v constant (only

variables in V are allow to change across time). For each v, the identity sums across all

configurations excluding itself. Under this decomposition scheme, the variance of model-

implied CIP deviations satisfies

σ2[b̂] = Iα + Ik + Iγ0 .

Of note, for the vector γ0, when computing counterfactual CIP deviations of currency i, only

its ith element is held constant when needed.

Table 12 reports the fraction of variation in model-implied CIP deviations (Iv/σ2[b̂])

that can be attributed to each of the three drivers. On average, financial constraints are

responsible for 46.4 percent of variation in model-implied CIP deviations. Hedging demands

and arbitragers’ capital explain the other 38.0 and 15.6 percents.

For variation in the data, consider the following equation

σ2[b] = σ2[b̂] + cov[b− b̂, b̂] + cov[b, b− b̂].

Since σ[b̂]/σ[b] ≈ 1 for most currencies according to Table 10, ratios above also approximate

the fraction of variation in the data that can be attributed to each of the three economic

forces.

These impacts differentiate across currencies. For euro and yen, the dynamics of finan-

cial constraints plays a crucial role in driving CIP deviations, accounting for 60-70 percent

CIP deviations in the model. For commodity currencies including Canadian dollars and

Australian dollars, hedging demands account for approximately 70 and 40 percent variation
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respectively. Arbitrageurs’ capital dynamics exerts substantial impacts (30 percent) only on

pound-dollar CIP deviations.

To further investigate the dynamics of variance attribution, I perform the Shapley de-

composition on a four-year rolling-window basis. Figure 10 presents the results. The most

striking pattern from plots in Figure 10 is that arbitrageurs’ capital can stabilize the CIP

basis when financial constraints or hedging demands exert disproportionately large impacts.

That is, under the counterfactual settings of holding arbitrageurs’ capital constant, fluctu-

ations in CIP deviations can increase. For example, in 2013-2014, Canadian dollar basis is

overwhelmingly driven by hedging demands. If arbitrage capital remains constant, (coun-

terfactual) variation in Canadian dollar CIP deviations would double.

One limitation to the Shapley decomposition due to the fact that arbitrageurs’ capital

is endogenously determined according to equation (15). Thus counterfactual CIP deviations

lead to alternative dynamics of kt, the variation of which further generates feedbacks to the

equilibrium basis. I do not account for this interaction in my current decomposition exercise.

Failing to do so may exaggerate influences of arbitrageurs’ capital. A potential channel is

that higher CIP deviations due to relatively low levels of (contemporaneous) kt help replenish

arbitrageurs’ capital in the future, enabling arbitrageurs to better absorb future financial and

hedging demand shocks.

5.3 The shape of financial constraints

The (basline) shape of financial constraints, namely C0, can be recovered from estimates of

the function S0(x) as follows

⋂
0<θ<π/2

{(x, y) : x+ y tan θ ≤ S0(tan θ)} .

Intuitively, C0 is a set containing all points “inside” the envelope of half planes x+ y tan θ ≤
S0(tan θ) for varying θ. Layering the half planes will unveil the shape of of financial con-

straints, a procedure similar to tomography: the shape of an object can be reconstructed

from its shadows when light beams shine on it from many different angles. angles.34

34Rigorously speaking, the set “C0” recovered from S0 using this procedure is the two-dimensional gen-
erator C2D

0 under Assumption 7. Readers may revisit Figure 4 for illustration. I will use the two notations
interchangeably here. I also restrict the range of θ such that the recovered set is in the first quadrant.
According to Assumption 7, C0 is symmetric to the horizontal axis, thus its shape in the fourth quadrant is
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One particularly interesting exercise would be figuring out how the baseline shapes of

financial constraints morph across time. This shape-shifting variation can capture additional

dynamics of financial constraints beyond the series αt. To make progress, I reestimate model

(19) for subsample periods of 2009-2013 and 2015-2019 and compare the recovered shape

estimates.

Figure 11 presents the estimated S0 functions as well as the recovered sets C0. The top

and bottom panels correspond to results for 2009-2013 and 2014-2019 respectively. White

areas enclosed by blue half planes are the sets C0. The x-axis corresponds to π0 (fractions of

equity capital deployable to support routine business) and y-axis is for π (arbitrage positions).

Shapes of these sets contain important information regarding arbitrageurs’ internal capital

allocation decisions. Let us shift our focus to the bottom right corner of C0 in Panel (A).

The pattern suggests that, in 2009-2013, arbitrageurs can build arbitrage positions that

are almost three times of their equity capital without the need to curtail other investment

positions. If arbitrage positions are four times larger than the equity capital, their routine

investments will shrink about 10 percent. Going beyond this level, increased π leads to sharp

decreases in π0 and the response is almost linear, indicating pronounced balance sheet costs.

Panel (B) of Figure 11 suggests that during 2014-2019, the balance sheet space becomes

more costly. Arbitrage positions quickly translate into downsized routine investments. For an

arbitrage position that is five times of arbitrageurs’ equity capital, the size of normal business

position (π0) is reduced by more than one half (compared with 10 percent during 2009-

2013). A hard leverage cap of around seven emerges in this period. This outcome appears

to be consistent with the fact that the supplementary leverage ratio (SLR) requirement was

finalized in the third quarter of 2014.

6 Conclusion

Most existing limits-to-arbitrage models lack the potential to be mapped to data directly,

thus the valuable insights they offer are hard to quantify. This paper attempts to partially

bridge the gap by developing a quantitative model of limited arbitrage with a special focus

on deviations from covered interest rate parity (CIP) conditions.

The model and its estimation methods can be a useful framework for understanding

trivial.
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other “anomalous” pricing phenomena in today’s financial markets, such as the IOER-RRP

arbitrage (interest rates on excess reserves being greater than the over overnight reverse repo

rates), the CDS-bond basis (the difference between credit spreads and credit default swap

rates of the same bond), and negative swap spreads (thirty-year Treasury yields exceeding

the corresponding swap rates). Common research questions arise in response to these phe-

nomena. For example, who are the main arbitrageurs in these markets? What types of

constraints they face (that are binding)? What are the main drivers of demands for the

involved derivatives contracts? What explains time-series variation of the underlying arbi-

trage opportunities? The current paper illustrates how to use the framework to answer such

questions.

My main contribution is to combine potential drivers of price dislocations such as hedg-

ing demands, financial constraints, and arbitrageurs’ capital in a parsimonious equilibrium

model. The model is flexible enough to incorporate existing knowledge about these economic

forces and estimate their influences on asset prices (and their deviations from frictionless

benchmarks). The key innovation is a general specification of financial constraints, and the

theoretical and econometric tools developed for unveiling their shapes and capturing their

dynamics.
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Table 1: Summary statistics of one-year CIP deviation measures for G6 currencies against
the dollar.

currency swap rates forward-OIS bases
mean s.d. median min max mean s.d. median min max

EUR −28.59 16.22 −26.60 −107.75 −17.00 −37.65 19.29 −35.97 −81.87 −23.24
JPY −34.43 14.91 −30.75 −82.38 −23.00 −53.06 22.50 −53.28 −109.38 −33.54
GBP −9.93 11.43 −7.62 −77.07 −1.88 −13.49 12.93 −10.05 −55.89 −3.64
CAD −10.56 10.98 −11.50 −32.88 −3.60 −8.73 12.20 −4.57 −74.27 −0.59
AUD 14.35 6.67 13.50 −4.12 18.90 13.51 14.43 13.93 −53.19 21.04
CHF −26.52 13.10 −24.75 −80.75 −16.00 −54.21 23.53 −50.18 −102.76 −34.72
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Table 2: Predictive regressions: book equity and market equity returns of global dealer
banks on one-year basis swap rates

This table presents results from the following panel regressions

1

τ
returni,t+τ = αi + βbt + εi,t+τ ,

for quarterly observations. The dependent variables are one-quarter-ahead net returns on the book equity
(BE), market equity (ME), or (artificially defined “returns” on) market-to-book ratio (MB) of 49 dealer
banks surveyed by FX committees of New York, London, Tokyo, Toronto, Sydney, Singapore and Hong
Kong. Variables are collected for their holding companies. All returns are annualized (divided by τ = 0.25)
net ones in percentage points. The subscript i represents banks and t denotes quarters. The independent
variable bt is the cross-sectional average of absolute one-year basis swap rates or forward-OIS bases for EUR,
JPY, GBP, AUD, CAD, and CHF against the dollar. Sample periods begin from January 2009 and end at
December 2019. Specifications with and without (αi = α for all i = 1, . . . , 49) bank fixed effects are both
included. Sample periods begin from March 2009 and end at December 2019. Numbers in parentheses are
Driscoll-Kraay standard errors robust to general forms of serial correlations and cross-sectional correlations
among banks (Driscoll and Kraay, 1998).

(BEi,t+τ/BEi,t − 1)% (MBi,t+τ/MBi,t − 1)% (MEi,t+τ/MEi,t − 1)%

Panel A: CIP deviations measured by currency swap rates

b (b.p.) 0.244 0.227 0.627 0.639 0.875 0.871
(0.114) (0.108) (0.426) (0.420) (0.397) (0.395)

const. 0.62 −14.59 −14.53
(2.88) (10.22) (9.66)

Bank f.e. ✗ ✓ ✗ ✓ ✗ ✓
N obs. 1713 1713 1713 1713 1713 1713
adj.-R2 (%) 1.0 4.0 1.5 1.4 2.9 2.4

Panel B: CIP deviations measured by forward-OIS implied bases

b (b.p.) 0.168 0.158 0.604 0.617 0.780 0.785
(0.082) (0.078) (0.356) (0.352) (0.341) (0.338)

const. 2.01 −15.02 −13.66
(2.76) (9.28) (8, 72)

Bank f.e. ✗ ✓ ✗ ✓ ✗ ✓
N obs. 1713 1713 1713 1713 1713 1713
adj.-R2 (%) 0.7 3.7 1.9 1.8 3.1 2.7
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Table 3: Predictive regressions: quarterly returns of FX committee surveyed (FXS) dealer
banks on one-year basis swap rates and placebo tests

This table presents results from the following time-series regressions:

1

τ
returnt+τ = β0 + βbt + ϵt+τ ,

for quarterly observations. The dependent variables are one-quarter-ahead value- or equal-weighted equity
returns of 49 dealer banks participating FX surveys (FXS) conducted by local monetary authority at New
York, London, Tokyo, Toronto, Sydney, Singapore and Hong Kong. Variables are collected for their holding
companies. Additional placebo tests use returns from five ETFs tracking the S&P500 index (SPY), the global
financial sector (IXG), the US financial sector (IYF), US broker-dealers and securities exchanges (IAI), and
US insurance companies (KIE). All returns are net ones in percentage, as well as annualized (divided by
τ = 0.25 as shown in the regression specification). The independent variable bt is the cross-sectional average
of absolute one-year one-year basis swap rates or forward-OIS bases for EUR, JPY, GBP, AUD, CAD, and
CHF against the dollar. Sample periods begin from January 2009 and end at December 2019. Numbers in
parentheses are Newey-West standard errors under automatic bandwidth selection.

ret. (p.p.) FXS (vw) FXS (ew) ETF-SPY ETF-IXG ETF-IYF ETF-IAI ETF-KIE
(S&P500) (Gl. Fin.) (US Fin.) (US B&D) (US Insur.)

Panel A: CIP deviations measured by currency swap rates

b (b.p.) 1.98 1.67 0.61 1.52 1.10 1.43 1.20
(0.87) (0.77) (0.44) (0.72) (0.67) (0.82) (0.76)

const. −32.0 −26.6 3.7 −20.4 −7.4 −17.2 −7.1
(19.7) (17.5) (10.4) (16.7) (15.7) (20.6) (17.7)

N obs. 44 44 44 44 44 44 44
R2-adj. (%) 6.2 4.5 0.6 4.9 2.5 4.0 2.1

Panel B: CIP deviations measured by forward-OIS implied bases

b (b.p.) 1.50 1.28 0.40 1.16 0.79 0.90 0.78
(0.64) (0.66) (0.26) (0.54) (0.45) (0.53) (0.49)

const. −28.4 −23.9 6.9 −17.5 −3.5 −10.4 −0.6
(17.4) (17.3) (8.1) (15.3) (13.6) (18.5) (15.5)

N obs. 43 43 43 43 43 43 43
R2-adj. (%) 13.5 10.6 1.6 11.1 5.6 4.7 3.6
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Table 4: Predictive regressions: quarterly returns of FX committee surveyed (FXS) dealer
banks on one-year basis swap rates and placebo tests

This table presents results from the following time-series regressions:

1

τ
returnt+τ = β0 + βbt + ϵt+τ ,

for daily and monthly observations. The dependent variables are one-quarter-ahead value- or equal-weighted
equity returns of 49 dealer banks surveyed by FX committees of New York, London, Tokyo, Toronto, Sydney,
Singapore and Hong Kong. Variables are collected for their holding companies. Additional placebo tests use
returns from five ETFs tracking the S&P500 index (SPY), the global financial sector (IXG), the US financial
sector (IYF), US broker-dealers and securities exchanges (IAI), and US insurance companies (KIE). For
monthly observations, five hedge fund index returns are also included: one global composite index from
BarclaysHedge (BCH), four indices from Hedge Fund Research (HFR) tracking global composite, relative
value arbitrage, global-macro, and macro-currency strategies. All returns are net ones in percentage, as well
as annualized (divided by τ = 0.25 as shown in the regression specification). The independent variable bt
is the cross-sectional average of absolute one-year basis swap rates for EUR, JPY, GBP, AUD, CAD, and
CHF against the dollar. Sample periods begin from January 2009 and end at December 2019. Numbers in
parentheses are Newey-West standard errors under automatic bandwidth selection.

Panel A: daily observations

ret. (p.p.) FXS (vw) FXS (ew) ETF-SPY ETF-IXG ETF-IYF ETF-IAI ETF-KIE
(S&P500) (Gl. Fin.) (US Fin.) (US B&D) (US Insur.)

b (b.p.) 2.46 2.25 0.53 1.93 1.27 1.47 1.30
(0.71) (0.71) (0.30) (0.62) (0.51) (0.65) (0.54)

const. −39.8 −36.4 4.9 −28.5 −10.5 −15.2 −8.7
(13.8) (13.4) (7.1) (12.4) (10.9) (14.5) (12.0)

N obs. 2859 2859 2761 2761 2761 2761 2761
R2-adj. (%) 12.0 10.3 2.3 9.6 5.9 5.6 5.3

Panel B: monthly observations

ret. (p.p.) FXS (vw) FXS (ew) ETF-SPY ETF-IXG ETF-IYF ETF-IAI ETF-KIE
(S&P500) (Gl. Fin.) (US Fin.) (US B&D) (US Insur.)

b (b.p.) 2.18 1.97 0.46 1.69 1.03 1.27 1.06
(0.79) (0.79) (0.36) (0.74) (0.64) (0.80) (0.72)

const. −34.3 −30.9 6.7 −23.5 −4.8 −10.7 −3.1
(16.3) (15.6) (9.2) (16.2) (14.6) (19.6) (16.1)

N obs. 132 132 132 132 132 132 132
R2-adj. (%) 9.7 7.9 1.0 7.1 3.3 3.6 2.8

ret. (p.p.) BCH HFR HFR HFR HFR
(Gl. Com.) (Gl. Com.) (Re. Val.) (Macro) (Macro. Cur)

|b| (b.p.) 0.27 0.21 0.17 −0.11 0.12
(0.16) (0.14) (0.12) (0.10) (0.12)

const. 0.1 0.4 2.6 4.0 −1.5
(4.0) (3.5) (2.9) (2.6) (2.5)

N obs. 132 132 132 132 132
R2-adj. (%) 1.9 1.2 1.1 0.4 1.5
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Table 5: Predictive regressions: quarterly returns of FX committee surveyed dealer banks
on one-year basis swap rates adjusted by controls

This table presents results from the following time-series regressions:

1

τ
returnt+τ = β0 + βbt + ϕ · controlt + ϵt+τ

for daily and monthly observations. The dependent variable is the one-quarter-ahead value-weighted equity
return of 49 dealer banks surveyed by FX committees of New York, London, Tokyo, Toronto, Sydney,
Singapore and Hong Kong. All returns are net ones in percentage, as well as annualized (divided by τ = 0.25
as specified in the regression equation). The independent variable bt is the cross-sectional average of absolute
one-year basis swap rates for EUR, JPY, GBP, AUD, CAD, and CHF against the dollar. Control variables
include the average smoothed earnings yield (E/P) and dividend yield (D/P) for the 49 dealer banks, the
effective Fed fund rate (FFR), and the CBOE volatility index (VIX). Sample periods begin from January
2009 and end at December 2019. Numbers in parentheses are Newey-West standard errors under automatic
bandwidth selection.

ret. (p.p.) Daily observations Monthly observations

b (b.p.) 2.46 1.18 1.90 2.18 1.00 1.69
(0.71) (0.49) (0.57) (0.79) (0.55) (0.68)

E/P 17.1 16.6
(3.5) (4.4)

D/P 3.99 3.96
(2.33) (2.74)

FFR 5.26 −1.34 4.53 −1.28
(4.61) (5.19) (5.75) (6.48)

VIX 0.00 2.85 0.47 3.28
(0.70) (1.09) (0.96) (1.40)

const. −39.8 −157.7 −92.2 −34.3 −157.7 −96.9
(13.8) (23.8) (23.5) (16.3) (29.8) (32.1)

N obs. 2859 2859 2859 132 132 132
R2-adj. (%) 12.0 43.1 27.2 9.7 42.4 27.8
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Table 6: Testing predictions from Proposition 1: linear regressions

This table presents results from the following time-series regressions:

1

τ

(
returnt+τ

rt

)
= β0 + β1Xt + ψ ×

(
1

rt

)
+ ϕ · controlt + εt+τ , Xt =

bt
rt

or
(
bt
rt

)2

using both daily and monthly observations. The notation “returnt+τ ” denotes one-quarter-ahead value-
weighted equity returns of 49 dealer banks surveyed by FX committees of New York, London, Tokyo, Toronto,
Sydney, Singapore and Hong Kong. All returns are net ones in percentage, as well as annualized (divided
by τ = 0.25 as shown in the regression specification). The cross-sectional average of absolute one-year basis
swap rates for EUR, JPY, GBP, AUD, CAD, and CHF against the dollar is denoted by |b|. The effective
Fed fund rate is denoted by r. The independent variable X is the time-series of either |b|/r or its square
(|b|/r)2. Another independent variable of interest is the inverse of the effective Fed fund rate (1/rt), inspired
by the capital accumulation formula in Proposition 1. Control variables include the smoothed earnings yield
(E/P) averaged across the 49 dealer banks, and the CBOE volatility index (VIX). Sample periods begin from
January 2009 and end at December 2019. Robust regressions use the Huber loss function to accommodate
potential outliers. Numbers in parentheses are Newey-West standard errors under automatic bandwidth
selection.

Daily observations Monthly observations
ret./r OLS Robust OLS Robust

b/r 138.5 104.1 117.1 84.9
(109.7) (102.3) (113.9) (103.0)

(b/r)2 33.4 30.0 24.7 27.2
(14.0) (12.5) (8.9) (3.63)

1/r −0.27 −0.21 −0.15 −0.11 −0.19 −0.18 −0.12 −0.12
(0.18) (0.11) (0.12) (0.06) (0.18) (0.10) (0.12) (0.07)

E/P 79.9 88.2 68.8 76.2 59.4 64.0 69.5 79.6
(26.7) (27.3) (27.0) (27.8) (31.3) (33.2) (17.6) (18.2)

VIX 0.91 −0.19 1.45 0.53 7.79 7.51 5.05 2.52
(7.07) (6.56) (4.62) (4.43) (8.90) (8.13) (6.03) (4.96)

const. −625.9 −621.9 −545.8 −559.3 −599.3 −566.4 −599.7 −604.6
(133.2) (132.9) (177.5) (186.4) (149.4) (153.8) (89.3) (84.8)

N obs. 2859 2859 2859 2859 132 132 132 132
R2-adj. (%) 28.7 32.6 − − 22.5 30.3 − −
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Table 7: Testing predictions from Proposition 1: semi-parametric regressions

This table presents results from the following semi-parametric regressions:

1

τ

(
returnt+τ

rt

)
= S0

(
bt
rt

)
+ ψ ×

(
1

rt

)
+ ϕ · controlt + ϵt+τ

using both daily and monthly observations. The notation “returnt+τ ” denotes one-quarter-ahead value-
weighted equity returns of 49 dealer banks surveyed by FX committees of New York, London, Tokyo, Toronto,
Sydney, Singapore and Hong Kong. All returns are net ones in percentage, as well as annualized (divided by
τ = 0.25 as shown in the regression specification). The cross-sectional average of absolute one-year basis swap
rates for EUR, JPY, GBP, AUD, CAD, and CHF against the dollar is denoted by |b|. The effective Fed fund
rate is denoted by r. Out of robustness concerns, only observations with |b|/r falling within the their sample
5% − 95% IQR are considered. Another independent variable of interest is the inverse of the effective Fed
fund rate (1/rt), inspired by the capital accumulation formula in Proposition 1. Control variables include
the smoothed earnings yield (E/P) averaged across the 49 dealer banks, and the CBOE volatility index
(VIX). Sample periods begin from January 2009 and end at December 2019. Semi-parametric estimation
of the model uses shape-constrained B-splines basis for the functional term s. Numbers in parentheses are
standard errors calculated from parametric block bootstrap procedures (that is, residuals of the fitted models
are re-sampled). Block sizes are ninety for daily observations and three for monthly observations. The table
also presents specification tests of whether the functional term should be included (S0 ≡ 0 or not) by showing
the test statistics, their (approximate) theoretical distributions, and test p-values.

ret./r Daily observations Monthly observations

1/r −0.30 −0.39 −0.54 −0.22 −0.22 −0.31
(0.10) (0.10) (0.09) (0.10) (0.09) (0.10)

E/P 15.8 18.0 55.6 2.3 0.66 20.7
(38.8) (39.7) (37.5) (46.9) (48.1) (50.9)

VIX 6.64 4.59 −2.30 9.73 10.47 6.24
(5.95) (6.06) (5.27) (7.17) (6.88) (7.19)

Test H0 : S0 ≡ 0 v.s. H1 : S0 ̸≡ 0
F-stat 189 189 133 13.9 7.37 6.07

Appr. dist. F (3, 2538) F (3, 2538) F (8, 2538) F (1, 116) F (2, 116) F (4, 116)
p-value < 10−6 < 10−6 < 10−6 3× 10−4 9× 10−4 3× 10−4

Shape constraints for f(·):
increasing ✓ ✓ ✗ ✓ ✓ ✗

convex ✓ ✗ ✗ ✓ ✗ ✗

N obs. 2541 2541 2541 119 119 119
R2-adj. (%) 28.0 28.7 40.2 18.7 18.6 21.6

58



−20

−10

0

10

20

30

0 1 2 3 4 5
x=b/r

S
C
(1

,x
)=

S
0(

x)

(A) SC(1, x): estimates under both monotonic increasing and convex constraints

−20

−10

0

10

20

30

0 1 2 3 4 5
x=b/r

S
C
(1

,x
)=

S
0(

x)

(B) SC(1, x): estimates under the monotonic increasing constraint

−20

−10

0

10

20

30

0 1 2 3 4 5
x=b/r

S
C
(1

,x
)=

S
0(

x)

(C) SC(1, x): estimates without shape constraints

Figure 5: Estimates of SC(1, x) under different configurations
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Table 8: First-step model estimation: the financial constraints

This table presents results from the following semi-parametric regressions:

1

τ

(
returnt+τ

rt

)
=

[
S0

(
exp(δ⊤ut)

bt
rt

)
+ ϕ⊤vt

]
+ εt+τ

using daily observations. Model parameters are δ and ϕ. The functional form of S0(·) is treated as unknown
and also estimated. The notation “returnt+τ ” denotes one-quarter-ahead value-weighted equity returns of
49 dealer banks surveyed by FX committees of New York, London, Tokyo, Toronto, Sydney, Singapore and
Hong Kong. All returns are net ones in percentage, as well as annualized (divided by τ = 0.25 as shown
in the regression specification). The cross-sectional average of absolute one-year basis swap rates for EUR,
JPY, GBP, AUD, CAD, and CHF against the dollar is denoted by bt. Both volume and equal weighted
results are reported. The first set of independent variables in vector ut are the dollar index, quarterly lagged
volatilities of average CIP deviations, changes in dealer banks’ CDS, the TED spread (three-month dollar
LIBOR rates minus the three-month Treasury bill rates), the implied volatility of euro, the VIX index, and
the three-month dollar convenience yield (the RefCorp bond yield minus the treasury yield). The second
set of variables in vector vt are reciprocals of the Fed fund rates (1/r), the earnings yields for the 49 dealer
banks (E/P), and the VIX index. Numbers in parentheses are standard errors from parametric bootstrap
procedures.

weighted by volume equally weighted

δ: dynamics of financial constraint
dollar index −0.018 −0.013

(0.009) (0.005)

lagged vol bt (b.p.) −0.037 −0.036
(0.035) (0.029)

∆ bank CDS (%) 0.096 0.047
(0.358) (0.294)

TED spread (%) 3.84 2.49
(2.12) (1.38)

ivol euro −0.156 −0.124
(0.079) (0.040)

VIX 0.059 0.040
(0.039) (0.030)

$ conv. yield (%) −0.933 −0.522
(0.218) (0.150)

ϕ: return controls
1/r −0.275 −0.376

(0.099) (0.111)
E/P 74.5 76.1

(21.0) (20.8)
VIX 0.389 1.88

(5.523) (5.37)

N obs. 2541 2541
Deviance R2 (%) 44.6 43.8
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Table 9: Second-step model estimation: hedging demands

This table presents results from the following panel regressions:

πitkt = β
⊤
xit +

n−1∑
j=1

η⊤
j (I[j = i]× xjt)− γbit + ℓit

using monthly observations. πit in the dependent variable is arbitrage positions calculated based on the
first-step estimation. kt is the total market equity of the 49 FX dealer banks, normalized to one on January
2009. The independent variables in xit include a constant one (for the intercept), bilateral net foreign direct
investment, net purchases of long-term securities (sovereign and local government bonds, corporate bonds,
equities), changes in net bank claims of deposits and short-term securities, and net exports (all in billions).
Interest rate differentials (calculated using three-month inter-bank rates, in basis points) are also included.
All “net” terms are calculated as “US minus foreign” (taking the US perspective). bit stands for one-year
CIP deviations for currency i at time t. The instrumental variable for bit is zit =

∑
i′ ̸=i wi′tx

(−ι)
i′t , weighted

average of xi′t (i′ ̸= i) vectors excluding the constant one (thus the “−ι” superscript). The first-stage
regression is then

bit = ψ
⊤zit + ϕ

⊤
xit +

n−1∑
j=1

ξ⊤j (I[j = i]× xjt) + eit,

Currencies under consideration are EUR, JPY, GBP, AUD, CAD, and CHF. The sample period is January
2009-December 2019. Numbers in parentheses are Driscoll-Kraay standard errors robust to general forms of
serial correlations and correlations among currency pairs (Driscoll and Kraay, 1998).

OLS IV

γ 0.18 1.31 1.43
(0.22) (0.51) (0.45)

Weak IV test:
Cragg-Donald Statistic 28.7 23.5
theory cutoff (5% relative bias) 18.4 18.4

β:
net direct investment flows 0.92 0.47 0.37

(0.64) (0.79) (0.85)
net purchase of long-term securities −0.77 3.39

(0.70) (1.59)
• bond 5.12

(1.64)
• equity −1.03

(2.15)
net change in bank claims −0.49 −0.11 −0.10

(0.33) (0.33) (0.32)
bilateral net exports 4.01 11.00 10.00

(4.78) (4.63) (4.06)
rforeign − r$ (%) −0.03 −0.07 −0.06

(0.03) (0.03) (0.03)
const. −19.5 −45.0 −48.7

(5.9) (12.9) (11.5)

N obs 784 784 784
R2-adj. (%) 54.6 55.9 55.9
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Figure 7: One-year CIP deviations for G6 currencies: model-implied and observations from
currency swaps
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Figure 8: One-year CIP deviations for G6 currencies: model-implied (in-sample 2009-2015
in black, out-of-sample 2016-2019 in red) and observations from currency swaps
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Figure 9: One-year CIP deviations for currencies not used for estimation: model-implied
and observations from currency swaps
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Table 10: Model-implied CIP deviations

This table documents CIP deviations solved from the estimated equilibrium equation (22), denoted by b̂

and compares it with b, the true data (one-year currency swap rates). The parameter β = cov[b̂, b]/σ2[b]

measures the fraction of variation in the data explained by the model, estimated from regressing b̂ on b.

Currency E[b] σ[b] E[b̂] σ[b̂] Corr[b, b̂] β (s.e.)

Panel A: G6 currencies used for estimation

EUR −29.2 16.8 −32.4 18.6 0.56 0.62 (0.13)
JPY −35.1 14.9 −35.4 17.8 0.61 0.73 (0.12)
GBP −9.3 10.3 −9.7 9.0 0.59 0.52 (0.08)
CAD −10.8 11.1 −10.6 12.2 0.83 0.91 (0.10)
AUD 14.0 6.3 15.6 6.3 0.40 0.40 (0.09)
CHF −26.8 13.0 −26.6 7.4 0.57 0.32 (0.07)

Panel B: currencies not used for model estimation

SEK −20.6 9.5 −20.4 4.7 0.58 0.29 (0.06)
NOK −24.7 14.6 −24.6 10.1 0.69 0.47 (0.08)
HKD −12.1 9.1 −11.2 7.3 0.75 0.60 (0.07)
NZD 17.2 5.9 17.3 3.9 0.54 0.35 (0.07)

Table 11: Model-implied CIP deviations: counterfactual time-series average

This table reports counterfactual time-series average CIP deviations from 2009 to 2019. The constant cα
relaxes (cα < 1) or tightens (cα > 1) the financial constraint. Numbers in parentheses are standard errors
for these (counterfactual) sample mean statistics.

Currency cα = 0.5 cα = 1 cα = 1.5 cα = 2 cα = 2.5

EUR −51.4 −32.2 −19.2 −11.2 −6.1
(15.3) (17.3) (15.1) (11.8) (7.1)

JPY −50.2 −35.3 −24.1 −16.2 −8.5
(15.3) (17.2) (17.1) (14.8) (8.2)

GBP −14.0 −9.7 −6.5 −4.2 −2.6
(11.2) (9.0) (7.5) (6.1) (4.5)

CAD −13.7 −10.7 −7.5 −6.3 −4.5
(13.7) (12.2) (14.3) (9.4) (7.3)

AUD 21.0 15.6 11.8 7.6 5.2
(5.3) (6.3) (10.3) (6.5) (5.7)

CHF −30.8 −26.6 −22.6 −19.0 −14.2
(5.4) (6.9) (8.0) (8.4) (6.6)
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Table 12: Shapley decomposition of model-implied CIP deviations

The table reports the full-sample Shapley decomposition results for G6 currencies. The decomposition
quantifies marginal contribution from each of the three economic forces to variation in model-implied CIP
deviations.

Currency financial constraints hedging demands arbitrage capital

EUR 0.553 0.287 0.160
JPY 0.596 0.187 0.217
GBP 0.415 0.294 0.291
CAD 0.235 0.558 0.207
AUD 0.519 0.318 0.163
CHF 0.432 0.470 0.098

Avg. 0.458 0.352 0.190
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Figure 10: Rolling window Shapley decomposition of variation in CIP deviations (gray:
financial constraints, purple: hedging demands, blue: arbitrageurs’ capital)
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Figure 11: Estimates of the baseline arbitrage profit function and shapes of financial
constraints
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Appendices
Appendix A Proofs

A.1 Proof of Proposition 1

I begin the proof by stating the following lemma:

Lemma A.1. Let the pair (π∗
0, π

∗) be such that π∗
0r + π∗b = SC(r, b), then if b > 0, π∗ ≥ 0;

if b < 0, π∗ ≤ 0.

Proof of Lemma A.1. By Assumption 3, (1, 0) ∈ C, as a result SC(r, b) ≥ r. If b > 0 and
π∗ < 0 or b < 0 and π∗ > 0, then SC(r, b) < π0r ≤ r (it is alway the case that π0 ≤ 1), a
contradiction, thus the lemma holds.

This lemma says that when b > 0, arbitrageurs profit from selling dollars forward35, i.e.,
π∗ ≥ 0 (positive forward dollar supplies). In the same vein, when b < 0, they will buy dollar
forward, i.e., π∗ ≤ 0 (negative forward dollar supplies).

Now we prove Proposition 1. The arbitrageurs’ optimization problem is equivalent to

maximize
y, s=k−y

log(y) +
1

1 + ρ
log(k − y) and maximize

(π0, π)∈C
π0r + πb. (A.1)

The first order condition with regard to y and s commands s = y/(1 + ρ). Combining this
condition with s = k − y, we have y = [(1 + ρ)/(2 + ρ)]k and s = k/(2 + ρ). By the
definition of SC and the boundedness of C, optimal combination of π0 and π must be such
that π0r + πb = SC(r, b) < ∞. As a result,

k′ = s+ π0sr + πsb = [1 + SC(r, b)] s =
1 + SC(r, b)

2 + ρ
k.

Noticing the fact that support functions are positively homogeneous of degree one (e.g.,
Molchanov and Molinari (2018, p. 75-76)), divide both sides of the equation above by r > 0
and then minus 1/r yield the capital accumulation equation. Substituting k by [(2+ρ)/(1+
ρ)]y and k′ by y′, we have

y′ =
1 + SC(r, b)

1 + ρ
y,

which agrees with the consumption Euler equation in the proposition.
Since C is convex, the support function SC is subadditive and (thus) convex (e.g., Molchanov

and Molinari (2018, p. 75-76)). It follows directly that (k′ − k)/k is a convex function of b.
To prove that arbitrageurs’ capital gain return (k′ − k)/k is increasing in |b|, we only

need to show that, with r fixed, if b ≥ 0 (b ≤ 0), SC(r, b) increases (decreases) in b. Consider

35They can offer pounds for dollars to earn the favorable rate r£ + b (b > 0) in cross-currency swap
markets now and return dollars to reclaim pounds later, or simply buy pounds forward (with dollars) in FX
swap/forward markets. Either way, they are supplying forward dollars.
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b′ ≥ b ≥ 0,

SC(r, b
′) = π∗′

0 r + π∗′b′ ≥ π∗
0r + π∗b′ = π∗

0r + π∗b+ π∗(b′ − b) ≥ SC(r, b),

where the pair (π∗′
0 , π

∗′
0 ) ∈ C maximize π0r+πb′, and the pair (π∗

0, π
∗
0) ∈ C maximize π0r+πb.

The last inequality above holds because π∗ ≥ 0 when b ≥ 0 (Lemma A.1). Using the same
notation, for b ≤ b′ ≤ 0,

SC(r, b) = π∗
0r + π∗b ≥ π∗′

0 r + π∗′b = π∗′
0 r + π∗′b′ + π∗′(b− b′) ≥ SC(r, b

′).

The last inequality above follows from the fact that π∗′ ≤ 0 when b′ ≤ 0 (Lemma A.1).
Q.E.D.

A.2 Proof of Proposition 2

The arbitrageurs’ optimal positions π∗
0 and π∗ are such that π∗

0r + π∗b = SC(r, b). Since SC
is positively homogeneous of degree one, and is differentiable (by assumption), we can apply
Euler’s homogeneous function theorem (Mas-Colell, Whinston, and Green, 1995, Theorem
M.B.2, p. 929), which implies that π(b) = π∗ = ∂SC(r, b)/∂b.

Then we turn to the existence and uniqueness result. Plugging the result for π(b) =
∂SC(r, b)/∂b and the expression (5) for q(b) into equation (6), we have

b =
γ0

γ +
∂SC(r, b)

b∂b
s

. (A.2)

Noticing that, by assumption, π(0) = ∂SC(r, 0)/∂b = 0 and SC is twice differentiable,

∂SC(r, b)

b∂b
=

1

b− 0

(
∂SC(r, b)

∂b
− ∂SC(r, 0)

b∂b

)
=

∂2SC(r, b)

∂b2

∣∣∣∣∣
b=b̂∈[0, b]

.

Due to the convexity of the support function SC, the condition ∂2SC(r, b)/∂b
2 ≥ 0 holds

against any values of b for which SC is well-defined, thus the right hand side of equation
(A.2), namely F (b), uniformly falls within the interval [0, γ0/γ] if γ0 ≥ 0 or [γ0/γ, 0] if
γ0 < 0. Since SC is twice differentiable, π(b) = ∂SC(r, b)/∂b is continuous, and so is the
function F (b) (notice that its denominator is always positive as γ > 0). By Brouwer’s
fixed point theorem (Mas-Colell, Whinston, and Green, 1995, Theorem M.I.1, p. 952), the
equation F (b) = b admits a solution b∗ in [0, γ0/γ] if γ0 ≥ 0 or [γ0/γ, 0] if γ0 < 0, thus the
existence result.

The uniqueness result follows naturally from the monotonicity of π(b)s− q(b) in b. Since
π′(b)s−q′(b) = ∂2SC(r, b)/∂b

2s+γ > 0 as long as γ > 0, π(b)s−q(b) monotonically increases,
thus the solution b∗ to π(b)s− q(b) = 0 is unique.

Next, we prove the conclusion that |b∗| is decreasing in the arbitrageurs’ initial capital k.
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From the proof of Proposition 1, the arbitrageurs’ saving s = k/(2 + ρ), thus

k =
(ρ+ 2)(γ0 − γb)

π(b)
. (A.3)

The right-hand side function of b in equation (A.3), denote by G(b), has a derivative

G′(b) = −(ρ+ 2)
γπ(b) + (γ0 − γb)π′(b)

[π(b)]2
,

in which π′(b) ≥ 0 for all b and γ > 0 by the assumption. When γ0 ≥ 0, γ0 − γb ≥ 0 and
b ≥ 0, which implies π(b) ≥ 0 from Lemma A.1. As a result, G′(b) ≤ 0: an increase in k
will leads to a smaller b∗ ≥ 0 such that G(b∗) = k. When γ0 < 0, γ0 − γb ≤ 0 and b ≤ 0,
indicating π(b) ≤ 0 from Lemma A.1. Then G′(b) ≥ 0: a increase in k will require a larger
b∗ ≤ 0 such that G(b∗) = k. Summing up the conclusions, |b∗| decreases in k.

Q.E.D.

A.3 Proofs (and possible generalizations) of propositions and lem-
mas in Section 3

Here I consider the general case: replacing the log utility with a power utility function
u(y) = (y1−γ − 1)/(1− γ). The log utility specification is the special case when γ = 1. The
arbitrageurs’ problem is to maximize

Jt = Et

[∫ ∞

0

e−ρsu (yt+s) ds

]
,

under the budget constraint (as defined in equation (11))

dk

k
= π0 [rdt+ w(µ− r)dt+ wσdz] + π⊤bdt− y

k
dt,

and position constraint
(π0, π) ∈ C,

by choosing (y, w, π0,π). It is worthwhile mentioning that all time-t subscripts are omitted
here. For example, the constraint (π0, π) ∈ C indeed represents (π0t, πt) ∈ Ct.

The Hamilton-Jacobi-Bellman (HJB) equation for arbitrageurs’ optimization problem is

ρJ = sup
y, w, π0,π

{u(y) +DJ} , where (π0, π) ∈ C. (A.4)

The value function J(k, K, s) is defined for the capital k of each arbitrageur, as well as
the aggregate capital K =

∫
[0, 1]

kdi of all arbitrageurs (Kyle and Xiong, 2001; Kondor and
Vayanos, 2019). K is effectively an additional state variable because it determines the
equilibrium arbitrage yield vector b. Given that arbitrageurs are identical and of mass one,
K = k in equilibrium. The vector s ∈ Rp incorporates all other state variables such as
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ones that determine i. the hedging demands; ii. time variation of the constraint; iii. the
triplet (rt, µt, σt) characterizing arbitrageurs’ other investment opportunities. I make clear
the assumptions about s as follows:

Assumption A.1. The dynamics of s = (s1, . . . , sp)
⊤ is written as a vector Itô process

defined in a complete probability space, that is,

ds = P (s)dt+Q(s)dzs,

where {zs} is a p-dimensional vector of independent standard Brownian motions; the vector-
valued function P : Rp 7→ Rp is such that sups ∥P (s)∥2 < ∞; the matrix-valued function
Q : Rp 7→ Rp×p is such that Q(s)Q(s)⊤ is positive definite with a finite dominant eigenvalue
for all s.

The time-varying elements of the model γ0,t (hedging demand intercepts), Ct (financial
constraints), and (rt, µt, σt) (investment opportunities beyond riskless arbitrage) all relate
to s as follows:

i. γ0,t = γ0(s) where the mapping γ0 : Rp 7→ Rn is continuously differentiable;

ii. Ct is such that its support function SCt(x) = S0(s, x) for all x ∈ dom(SCt) where S0 is
continuously differentiable in s;

iii. rt = r(s), µt = µ(s), σt = σ(s) where the three mappings r : Rp 7→ R, µ : Rp 7→ R and
σ : Rp 7→ R+ are all continuously differentiable.

Under the assumption above, I calculate the infinitesimal generator for the value function
J(k, K, s) as follows:

DJ =Jk
E [dk]

dt
+

1

2
Jkk

E [dkdk]

dt
+ J⊤

ks

E [dkds]

dt
+ JkK

E [dkdK]

dt

+ JK
E [dK]

dt
+ J⊤

s

E [ds]

dt
+

1

2
tr

{
Jss

E
[
dsds⊤

]
dt

}
+

1

2
JKK

E [dKdK]

dt
+ J⊤

Ks

E [dKds]

dt︸ ︷︷ ︸
constant w.r.t. (y, w, π0, π)

=Jk
{
kπ0 [r + w(µ− r)] + kπ⊤b− y

}
+

1

2
Jkkk

2π2
0w

2σ2

+

p∑
j=1

Jksjkπ0wσ
E [dzdsj]

dt
+ J⊤

kKkπ0wKΠ0Wσ2 + constant,

where Π0 =
∫
[0, 1]

π0di and w =
∫
[0, 1]

wdi aggregate positions π0 and w of all arbitrageurs. In
equilibrium, Π0 = π0 and W = w.

For the ease of exposition below, I introduce two definitions first.

Definition A.1. (Bertsekas, 2009, Chapter. 1, p. 7, Properness of a function) A proper
function f is one such that f(x) < ∞ for at least one x in its domain and f(x) > −∞ for
all x in its domain.
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Definition A.2. (Bertsekas, 2009, Chapter. 1, p. 83, Conjugate functions) Consider a
real-valued function f , the conjugate function of f is the function f ⋆ defined by f ⋆(y) =
sup{x⊤y − f(x)}.

Now I begin to list and prove a set of lemmas.

Lemma A.2. Define the indicator function for C:

IC(x) =

{
0, x ∈ C
+∞, x /∈ C . (A.5)

IC is a proper closed convex function.

Proof. First, it is always true that IC ≥ 0 > −∞, and, as long as C is nonempty (true by
assumption), IC = 0 < ∞, for x ∈ C. As a result, IC is proper.

Second, consider the epigraph of IC, defined as {(x, α) : IC(x) ≤ α}. By definition, this
set is C× [0, ∞), which is convex as long as C is convex. Thus, IC must be convex (Bertsekas,
2009, Chapter. 1, p. 8, Definition 1.1.3).

Third, consider the set {x : IC(x) ≤ α}, which equals C (a closed set by assumption)
when α ≥ 0 and ∅ (always closed) otherwise. Thus, IC is a closed function.

Lemma A.3. The indicator function of the set C is such that IC(x) = supy

{
x⊤y − SC(y)

}
,

that is, IC = S⋆
C.

Proof. First, noticing that

SC(y) = sup
x∈C

x⊤y = sup
{
x⊤y − IC(x)

}
,

that is, SC is the conjugate of IC, or simply SC = I⋆C .
Next, since IC is a proper closed convex function, by the Conjugacy Theorem (Bertsekas,

2009, Chapter. 1, p. 85-86), I⋆⋆C = IC, that is, the conjugate function of I⋆C is IC itself. Thus,
S⋆
C = IC.

Lemma A.4. The HJB equation of (A.4) under the constraint (π0, π) ∈ C is equivalent to

ρJ = inf
ν

sup
y, w, π̂

{
u(y) +DJ + SC(ν)− π̂⊤ν

}
, (A.6)

without any constraints, where

π̂ =

(
π0

π

)
is a vector concatenating π0 and π, ν = (ν0, ν1, . . . , νn)

⊤ is a vector of (n+ 1) dimensions.

Proof. Under the definition of indicator functions introduced in (A.5), the problem of (A.4)
is equivalent to

ρJ = sup
y, w, π̂

{u(y) +DJ − IC(π̂)} .
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This equivalence is easy to understand. When π̂ ∈ C, the optimization problem is exactly the
original one. Otherwise, the indicator function penalizes the objective function so harshly
that regardless how carefully the choice variables are picked, the outcome is always −∞.

From Lemma A.3, −IC(π̂) = infν
{
SC(ν)− π̂⊤ν

}
. Thus

ρJ = sup
y, w, π̂

{
u(y) +DJ + inf

ν

{
SC(ν)− π̂⊤ν

}}
,

= sup
y, w, π̂

inf
ν

{
u(y) +DJ + SC(ν)− π̂⊤ν

}
(A.7)

= inf
ν

sup
y, w, π̂

{
u(y) +DJ + SC(ν)− π̂⊤ν

}
.

The last equation follows from the fact that the function {u(y) +DJ + SC(ν)− π̂⊤ν} as a
whole is concave in (y, w, π̂) with fixed ν and convex in ν with fixed (y, w, π̂), satisfying
the saddle point property.

Now I prove the Proposition 3. From Lemma A.4, the initial maximization problem of
(A.6) leads to the following first-order condition with regard to w:

Jkkπ0(µ− r) + Jkkk
2π2

0wσ
2 +

p∑
j=1

Jksjkπ0σ
E [dzdsj]

dt
+ JkKkπ0KΠ0Wσ2 = 0. (A.8)

For elements in π̂, the first order condition with regard to π0 is

Jkk [r + w(µ− r)] + Jkkk
2π0w

2σ2 +

p∑
j=1

Jksjkwσ
E [dzdsj]

dt
+ JkKkwKΠ0Wσ2 − ν0 = 0.

(A.9)

Performing the calculation of (A.9)-[(A.8)×w/π0], for both sides of the two equations, we
have

Jkkr = ν0. (A.10)

For π1, . . . , πn in the vector π̂, Lemma A.4 commands choosing πi to maximize (Jkkbi−νi)πi.
As long as Jkkbi does not equal νi, the maximized objective function reaches infinity. Thus,
in equilibrium,

Jkkbi = νi, (A.11)

for all i = 1, . . . , n.
Now consider the equation (A.7) shown in the proof of Lemma A.4. The initial mini-

mization problem with regard to ν,

inf
ν

{
u(y) +DJ + SC(ν)− π̂⊤ν

}
,
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will only yield two possible outcomes: −∞ or {u(y) + DJ}. In equilibrium, this outcome
cannot be −∞, thus ν must be such that SC(ν)− π̂⊤ν = 0, that is

π0ν0 +
n∑

i=1

πiνi = SC(ν0, ν1, . . . , νn). (A.12)

Noticing that SC is positively homogeneous of degree one, divide both sides of equation
(A.12) by Jkk

π0
ν0
Jkk

+
n∑

i=1

πi
νi
Jkk

= SC

(
ν0
Jkk

,
ν1
Jkk

, . . . ,
νn
Jkk

)
,

and combine the result above with equation (A.10) as well as the set of equations (A.11),

π0r + π
⊤b = SC(r, b).

Proposition 3 then follows from the equation above as well as Euler’s homogeneous function
theorem (Mas-Colell, Whinston, and Green, 1995, Theorem M.B.2, p. 929).

Q.E.D.
For Proposition 4, I state the following generalized version (for CRRA utility functions)

and then present its proof.

Proposition A.1. Under Assumption A.1, in equilibrium, there exist a function g(K, s) :
R×Rp 7→ R of the aggregate capital and the state variables, such that arbitrageurs’ optimal
rates of consumption y satisfy

log
(y
k

)
=

1

γ
[log ρ− (1− γ)g(K, s)] ;

their total positions on the risky project (π0w) are

1

A(K, s)

(
µ− r

σ2
+

p∑
j=1

λj(K, s)βj

)
,

where
βj =

cov [dr̃, dsj]

var[dr̃]
,

is the regression coefficient of the changes in the j-th state variable, namely dsj, regressed
on the risky project return dr̃; functions A and λj are

A(K, s) = γ − (1− γ)
∂g(K, s)

∂K
K,

λj(K, s) = (1− γ)
∂g(K, s)

∂sj
.

Proof. From Lemma A.4, the maximization problem yields the following first-order-condition
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for y:
u′(y) = Jk.

Homogeneity of u′(y) = y−γ implies that the value function is of the following format:

J(k, K, s) =
1

ρ
u (kG(K, s)) , where G(K, s) = exp(g(K, s)).

For the special case of log utility (γ = 1), the specification still holds and

J(k, K, s) =
1

ρ
log(k) + g(K, s).

Noticing that

Jk =
1

ρ
u′(kG)G =

1

ρ
k−γG1−γ,

the equation u′(y) = Jk is equivalent to ρy−γ = k−γG1−γ. Taking logarithm and rearranging
terms,

log
(y
k

)
=

1

γ
[log ρ− (1− γ)g(K, s)] .

From (A.8),

π0w = − Jk
kJkk

(
µ− r

σ2

)
−

p∑
j=1

Jksj
kJkk

E [(σdz)dsj]

E [(σdz)(σdz)]︸ ︷︷ ︸
=βj

− JkK
kJkk

KΠ0W.

Second order derivatives of the value function are given by

Jkk = −γ

ρ
k−γ−1G1−γ = −γJk

k
, Jksj =

1− γ

ρ
k−γG−γ ∂G

∂sj
, JkK =

1− γ

ρ
k−γG−γ ∂G

∂K
.

Plugging all expressions above to the equation for π0w:

π0w =
µ− r

γσ2
+

p∑
j=1

1− γ

γ

∂G

G∂sj
βj +

1− γ

γ

∂G

G∂K
KΠ0W

=
µ− r

γσ2
+

p∑
j=1

1− γ

γ

∂g

∂sj
βj +

1− γ

γ

∂g

∂K
KΠ0W

=
µ− r

γσ2
+

p∑
j=1

λj(K, s)

γ
βj +

1− γ

γ

∂g

∂K
KΠ0W

77



Noticing that the aggregate positions Π0 and W equal π0 and w respectively, then(
1− 1− γ

γ

∂g

∂K
K

)
π0w =

1

γ

(
µ− r

σ2
+

p∑
j=1

λj(K, s)βj

)
,

that is,

π0w =
1

A(K, s)

(
µ− r

σ2
+

p∑
j=1

λj(K, s)βj

)
.

Proposition 4 is the special case of the results above when γ = 1. Results collected here
in Proposition A.1 have natural interpretations. The consumption-to-wealth ratio y/k is a
function of the state variables s and aggregate capital K when γ ̸= 1. It equals the constant
ρ for the log utility case.

Arbitrageurs’ demand for the risky project (proportional to their capital) is “Mertonian”,
both the myopic mean-variance demand and state-variable hedging demands (driven by the
betas) appear when γ ̸= 1. The ratio −λj/A can be interpreted as the risk premium of the
risky project due to its exposure to the risk factor sj. With the log utility, λj(K, s) = 1 for
all j = 1, . . . , p, and all hedging demands disappear.

Since the aggregate capital also becomes an endogenous state-variable, a dynamic risk-
aversion function A(K, s) emerges and replaces the constant relative risk-aversion parameter
γ, similar to the exposition of Kondor and Vayanos (2019). With the log utility specification,
the dynamic risk-aversion A(K, s) equals one. Proof of Proposition 4 thus follows through.

Q.E.D.
Next I present and prove a generalized version of Proposition 5.

Proposition A.2. In equilibrium, the arbitrageurs’ capital evolves according to the following
rule:

dk

k
=
[
λσ̂ − y

k
+ SC(r, b)

]
dt+ σ̂dz (A.13)

where

σ̂ =
1

dt
E

[(
dk

k

)2
]
=

1

A(K, s)

(
λ+

p∑
j=1

σλj(K, s)βj

)
;

y

k
= exp

{
1

γ
[log ρ− (1− γ)g(K, s)]

}
;

functions λj(K, s), j = 1, . . . , p, and A(K, s) are defined as in Proposition A.1; λ = (µ −
r)/σ is the Sharpe ratio of the risky project available to arbitrageurs.

Proof. Plugging results from Proposition A.1 into the dynamic budget constraint of arbi-
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trageurs, we have

dk

k
= π0 [rdt+ w(µ− r)dt+ wσdz] + π⊤bdt− y

k
dt

=
(
π0r + π

⊤b
)
dt+ π0w(µ− r)dt− y

k
+ π0wσdz

= SC(r, b)dt+
1

A(K, s)

(
λ2 +

p∑
j=1

λσλj(K, s)βj

)
dt− y

k
dt+

1

A(K, s)

(
λ+

p∑
j=1

σλj(K, s)βj

)
dz,

in which
y

k
= exp

{
1

γ
[log ρ− (1− γ)g(K, s)]

}
in equilibrium. The proposition follows through.

With γ = 1 (the log-utility case), functions A = 1 and λj = 0, as a result, σ̂ = λ.
Also, the ratio y/k is the constant ρ in equilibrium under the log utility as in Proposition 4.
Plugging these quantities back to equation (A.13), we have

dk

k
=
[
λ2 − ρ+ SC(r, b)

]
dt+ λdz,

completing the proof for Proposition 5.
Q.E.D.

I now prove Proposition 6. First, I show that it is alway the case that k > 0. From
Proposition 5, arbitrageurs’ date-t capital in equilibrium is

kt = k0 exp

{∫ t

0

[
1

2
λ2
s − ρ+ SC(rs, bs)

]
ds+

∫ t

0

λsdzs

}
,

which is greater than zero as long as k0 > 0 (by model assumption).
Now consider the closed ball B(0, ∥γ0∥2/γ) in Rn and an arbitrary vector b in this ball.

For any fixed r and k > 0, since

∂SC(r, b)

∂b
=

∂SC(r, 0)

∂b
+

∂2SC(r, b
∗)

∂b∂b⊤
b

= π(0) +HC(r, b
∗)b,

=HC(r, b
∗)b (π(0) = 0 By Assumption 6)

for some b∗ (as a function of b) such that b∗ ∈ B(0, b) ⊂ B(0, ∥γ0∥2/γ), where HC =
∂2SC/∂b∂b

⊤ defines the Hessian matrix of SC, we have b = (γ +HC(r, b
∗)k)−1 γ0. Convexity

of the support function SC commands that HC is positive semi-definite everywhere. Let

HC(r, b
∗) = Γ⊤diag(d1, . . . , dn)Γ, d1 ≥ d2 ≥ · · · ≥ dn ≥ 0

be its eigen-decomposition (for HC(r, b
∗) is real-valued and symmetric, this decomposition
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must exist), then

(γ +HC(r, b
∗)k)−1 = Γdiag

(
1

γ + d1k
, . . . ,

1

γ + dnk

)
Γ⊤

and

∥ (γ +HC(r, b
∗)k)−1 γ0∥2 ≤

1

γ + dnk
∥γ0∥2 ≤

1

γ
∥γ0∥2.

Thus (γ +HC(r, b
∗(b))k)−1 γ0 is a continuous mapping from B(0, ∥γ0∥2/γ) to itself. By

Brouwer’s fixed point theorem (Mas-Colell, Whinston, and Green, 1995, Theorem M.I.1,
p. 952), the original equation, which finds the fixed point of this mapping, admits a solution.

Uniqueness of the solution is due to the fact that the Jocabian matrix of function
(∂SC(r, b)/∂b)k + γb is

J(r, b) = HC(r, b) + γ,

the determinant of which equals
∏n

i=1(di+γ) > 0 everywhere. Thus, by the implicit function
theorem (Mas-Colell, Whinston, and Green, 1995, Theorem M.E.1, p. 941-942), within the
ball B(0, ∥γ0∥2/γ), equation (∂SC(r, b)/∂b)k + γb = γ0 admits a unique solution.

Q.E.D.
I finish this section by proving Lemma 1. For (π∗

0, π
∗) ∈ Ct such that SCt(r, b) =

π∗
0r + π

∗⊤b, we have that

SCt(r, b) = π∗
0r +

(
π∗

αt

)⊤

(αtb) ≤ SC0 (r, αtb)

because (π∗
0t, π

∗
t /αt) ∈ C0. For any (π0, π) ∈ C0, since (π0, αtπ) ∈ Ct, it must be that

SCt(r, b) ≥ π0r + (αtπ)
⊤b = π0r + π

⊤(αtb).

Since the inequality above holds for an arbitrary pair of (π0, π) ∈ C0, SCt(r, b) ≥ SC0(r, αtb).
Combining results above, SCt(r, b) = SC0(r, αtb), which is the conclusion of Lemma 1.

Q.E.D.
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Appendix B Algorithmic details for the first-step estima-
tion

The statistical model is equivalent to

E [yt] = λ
⊤zt + S (xtαt) ,

αt = exp
(
δ⊤ut

)
.

The semi-parametric nonlinear least square problem to solve is

minimize
λ, δ, S(·)

T∑
t=1

[
yt − λ⊤zt − S (xtαt)

]2
.

To start the algorithm, initialize δ with a guess δ(0). At iteration i,

• Treating δ(i) as known, calculate α
(i)
t . Then fit the semi-parametric model

minimize
λ, S

T∑
t=1

[
yt − λ⊤zt − S

(
xtα

(i)
t

)]2
to find λ(i), S(i)(·) and the residuals ε

(i)
t ;

• Define ŷ
(i)
t = yt − λ(i)⊤zt, solve the following problem

minimize
δ

L =
T∑
t=1

[
ŷ
(i)
t − S(i)

(
xt exp

(
δ⊤ut

))]2
.

Specifically, consider the Taylor expansion at xtα
(i)
t

L ≈
T∑
t=1

[
ŷ
(i)
t − S(i)

(
xtα

(i)
t

)
− S(i)′

(
xtα

(i)
t

)
xt

(
exp

(
δ⊤ut

)
− α

(i)
t

)]2
=

T∑
t=1

[
ŷ
(i)
t − S(i)

(
xtα

(i)
t

)
+ S(i)′

(
xtα

(i)
t

)
xtα

(i)
t − S(i)′

(
xtα

(i)
t

)
xt exp

(
δ⊤ut

)]2
.

Define
wt = S(i)′

(
xtα

(i)
t

)
xt

ỹ
(i)
t =

1

wt

[
ŷ
(i)
t − S(i)

(
xtα

(i)
t

)]
︸ ︷︷ ︸

ε
(i)
t

+α
(i)
t ,
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the approximate problem becomes

minimize
δ

L =
T∑
t=1

w2
t

[
ỹ
(i)
t − exp(δ⊤ut)

]2
.

which is a weighted nonlinear least square problem. Solve the problem to get δ(i+1).

• Start iteration i+ 1

The algorithm iterates the above loop until convergence.
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Appendix C Microfoundation of (net) hedging demands

There are two countries, country d (domestic, the US) and f (foreign, the UK). Each country
issues its own currency. We call the domestic (d) currency “dollar” and foreign (f) currency
“pound”. The exchange rate (pounds against dollars) at date t is Et. In other words, one
pound is exchanged for Et amount of dollars (in practice, the GBP/USD currency pair). I
assume that the dynamics of this exchange rate follows a Geometric Brownian motion:36

dE

E
= µedt+ σedze,

where µe measures the expected rate of appreciation for pounds, σe captures its volatility,
the process {ze} is a standard Brownian motion.

There is a continuum of mass one identical hedgers in each country, namely d-hedgers
and f -hedgers. Hedgers are exposed to currency risks due to their endowments abroad.
Specifically, j-hedgers’ (j ∈ {d, f}) endowments at time t is Dj

t from abroad, denominated
in foreign currencies (i.e., Df

t is denominated in dollars, and Dd
t is denominated in pounds).

These endowments can be interpreted as cash flows from each country’s Balance of Payments
(BOP) items, such as export receivables, (changes in) direct or portfolio investment, as well
as returns received from existing asset positions abroad. I assume that these endowments,
denominated in dollars, satisfy multi-factor structures:

DdE = λ⊤
d x+ λd,0,

Df = λ⊤
f x+ λf,0,

in which the vector of factors, denoted by x, is a multivariate Itô process:

dx = µ(x)dt+ σ(x)dzx.

Elements in the vector {zx} are standard Brownian motions. Functions µ and σ are such that
E [dx] = µ(x)dt and E

[
dxdx⊤] = σ(x)σ(x)⊤dt are well defined in a complete probability

space.
Hedgers of type j maximize mean-variance utilities over instantaneous wealth changes in

[t, t+ dt] denominated in their home currency

E
[
dW j

]
− Aj

2
var
[
dW j

]
, j ∈ {d, f}, (C.1)

where dW j represents these instantaneous wealth changes. The parameter Aj captures the
level of risk-aversion of the type-j hedgers who face the trade-off between the mean and
variance of wealth change dW j. Agents optimizing (C.1) can be interpreted as overlapping
generations who are born at date t, manage their wealth from t to (t+dt), consume everything
and then die at time (t+ dt). If their preferences over final consumptions are characterized
by the von Neumann-Morgenstern expected utility E[u(·)], the risk-aversion parameter Aj

36Again, all time subscripts are omitted whenever there is no confusion caused.
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in problem (C.1) can be regarded as Aj = −u′′(W j)/u′(W j).37 I assume that

Ad =
Af

E
= A,

just to guarantee that the risk aversion parameters are invariant against the exchange rate.
In the baseline setting, dW d = d

(
DdE

)
(d-hedgers in the US repatriating pound en-

dowments) and dW f = d
(
Df/E

)
(f -hedgers in the UK repatriating dollar endowments).

Hedgers cannot manage their wealth changes from time t to (t+ dt).
Beyond the baseline setting, I allow hedgers to alter their currency risk exposures using

forward contracts.38 These contracts, signed at time t, allow hedges to exchange F units of
dollars for one pound at time (t+ dt). Taking CIP deviations as given, the forward price F
satisfy

F exp
(
rfdt+ bdt

)
= E exp

(
rddt

)
,

where rf and rd are pound and dollar risk-free rates. For d-hedgers managing their pound
exposures, they can sign a forward contract exchanging hd pounds for hdF dollars. As a
result, their wealth changes is now

dW d =
[
hdF +

(
Dd + dDd − hd

)
(E + dE)

]
−DdE

=hdE

(
F

E
− 1− dE

E

)
+ d

(
DdE

)
=hdE

[(
rd − rf − b− µe

)
dt− σedze

]
+ d

(
DdE

)
. (C.2)

Choosing hd to maximize (C.1) for j = d under (C.2) yields the following first-order condition:

E
(
rd − rf − b− µe

)
− Ad

{
hdE2σ2

e −
Eσe

dt
E
[
dzed

(
DdE

)]}
= 0,

37This is, of course, also due to the fact that shocks to hedgers’ endowment factors x and spot exchange
rate return dE/E are all Gaussian.

38In practice, other forward-like derivative contracts such as foreign exchange swaps (FX swaps in short)
and cross-currency basis swaps (currency swaps in short) can serve similar purposes, though preferred by
agents of different business models and cash flow durations.
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from which we solve for hd as

hd =
rd − rf − µe

EAdσ2
e

− b

EAdσ2
e

+
1

Eσedt
E
[
dzed

(
DdE

)]
=

rd − rf − µe

EAσ2
e

− b

EAσ2
e

+
Dd

σ2
edt

E
[
dE

E

(
dDd

Dd
+

dE

E
+

dDd

Dd

dE

E

)]
=

rd − rf − µe

EAσ2
e

− b

EAσ2
e

+
Dd

σ2
edt

E
[
dE

E

dDd

Dd
+ σ2

edt

]
= −µe + rf − rd

EAσ2
e

− b

EAσ2
e

+
cov

[
dE/E, dDd/Dd

]
var [dE/E]︸ ︷︷ ︸

βd

Dd +Dd. (C.3)

The equation above conveys straightforward intuitions. Consider (Dd − hd), which rep-
resents the d-hedgers’ unhedged pound exposure. We can also treat the quantity as if it is a
pure speculative position on GBP/USD. This term increases in (µe + rf − rd), which is the
(expected) excess return from a GBP/USD carry trade (borrowing dollars, exchanging for
pounds in spot markets, then lending pounds). This excess return over the variance (scaled
by the risk-aversion parameter) is the canonical mean-variance portfolio demand.

The d-hedgers’ pure (unhedged) pound exposure (Dd − hd) increases when βd, the re-
gression coefficient of d-hedgers’ endowment growth rates on the currency returns, decreases.
Lower βd makes the exchange rate E itself a better hedge against a future drop in d-hedgers’
endowments, thus incentives hedgers to take on more the currency risk.

Hedged position hd decreases in the CIP deviations. Recall that hd represents the quantity
of pounds d-hedgers are selling forward. As higher b translates to relatively lower forward
pound price: selling pounds for dollar forward becomes less favorable, thus a smaller hedged
position.

Similarly, for f -hedgers hedging against USD/GBP exchange risk, they will sell hf units
of dollar for hf/F units of pounds forward. The resulting wealth change is

dW f =
hf

F
+
(
Df + dDf − hf

t

)( 1

E
+ d

(
1

E

))
− Df

E

=
hf

E

[
E

F
− 1− Ed

(
1

E

)]
+ d

(
Df

E

)
=
hf

E

[(
rf − rd + b+ µe − σ2

e

)
dt+ σedze

]
+ d

(
Df

E

)
. (C.4)

f -hedgers will choose hf to maximize (C.1) for j = f under their budget constraint (C.4),
will lead to the following first-order condition:

1

E

(
rf − rd + b+ µe − σ2

e

)
− Af

{(
1

E

)2

hfσ2
e +

σe

Edt
E
[
dzed

(
Df

E

)]}
= 0.
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From the equation above, we can solve for hf :

hf =
rf − rd + µe − σ2

e

(Af/E)σ2
e

+
b

(Af/E)σ2
e

− E

σedt
E
[
dzed

(
Df

E

)]
=

rf − rd + µe − σ2
e

Aσ2
e

+
b

Aσ2
e

− Df

σ2
edt

E
[
dE

E

(
dDf

Df
− dE

E
+

dE

E

dE

E
− dDf

Df

dE

E

)]
=

rf − rd + µe − σ2
e

Aσ2
e

+
b

Aσ2
e

− Df

σ2
edt

E
[
dE

E

dDf

Df
− σ2

edt

]
=

µe + rf − rd

Aσ2
e

− 1

A
+

b

Aσ2
e

−
cov

[
dE/E, dDf/Df

]
var [dE/E]︸ ︷︷ ︸

βf

Df +Df . (C.5)

The f -hedgers optimal choice of hf delivers similar intuitions as the d-hedgers’. Now that
hf represents the amount of dollars f -hedgers are selling forward for pounds, thus a long
position on pounds, it increases in the (expected) GBP/USD risk premium, and decreases
in βf as defined above (a higher βf means pounds do not offer protection against f -hedgers’
endowment risk).

Based on equation (C.3) and (C.5), we can calculate the net demand for dollars in forward
markets, in dollar terms. Since d-hedgers sell hd units of pounds for dollars and f -hedgers
sell hf units of dollar for pounds, the net forward dollar demand is

hdE − hf = −2(µe + rf − rd)

Aσ2
e

+
1

A
+DdE(1 + βd)−Df (1− βf )︸ ︷︷ ︸

γ0

− 2

Aσ2
e︸︷︷︸

γ>0

b.

This expression agrees with the specification of hedgers’ demand given in equation (5).
Plugging in the assumptions that

DdE = λ⊤
d x+ λd,0,

Df = λ⊤
f x+ λf,0,

we have

hdE − hf

=
[
λ

(o)
d (1 + βd)− λ(o)

f (1− βf )
]⊤

︸ ︷︷ ︸
β⊤

x(o)+

=
[
λ

(u)
d (1 + βd)− λ(u)

f (1− βf )
]⊤
x(u) + λd,0(1 + βd)− λf,0(1− βf ) +

1

A
− 2(µe + rf − rd)

Aσ2
e︸ ︷︷ ︸

ℓ

−γb,

where x(o) denotes observable components in x (λ(o)
d and λ(o)

f being loadings for the observ-
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able factors) and x(u) denotes the unobservables (λ(u)
d and λ(u)

f being their loadings). Thus
the net hedging demands have three parts: the linear combination of observable factors
β⊤x(o), the latent unobservable demand ℓ, and the downward sloping response term −γb.
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Figure A1: One-year CIP deviations for G6 currencies: currency swap rates and forward-
OIS basis
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Appendix D Additional tables and figures

Table A1: Dealer banks surveyed by foreign exchange committees, October 2004-April 2020

Australia and New Zealand Banking Group Limited Bank of America Corporation
Bank of China Bank of East Asia Limited
Bank of Montreal Bank of New York Mellon Corporation
Bank of Nova Soctia Barclays Plc
BNP Paribas SA Canadian Imperial Bank of Commerce
China Bank of Communications Citigroup Inc
Commerzbank AG Commonwealth Bank of Australia
Crédit Agricole Corporate and Investment Bank Credit Suisse Group AG
DBS bank Ltd Deutsche Bank AG
Goldman Sachs Group Inc Hang Seng Bank Limited
HSBC Holdings Industrial and Commercial Bank of China
The ING Group JP Morgan Chase & Co
Lloyds Banking Group Plc Macquarie Bank Limited
Mizuho Bank Limited Morgan Stanley
Mitsubishi UFJ Financial Group National Australia Bank
National Bank of Canada NatWest Group Plc
Nomura Holdings Inc Oversea-Chinese Banking Corporation Limited
Resona Holdings Inc Royal Bank of Canada
Shinsei Bank Limited Skandinaviska Enskilda Banken AB
Société Générale SA Standard Chartered Plc
State Street Corporation Sumitomo Mitsui Financial Group Inc
Sumitomo Mitsui Trust Holdings Inc Toronto-Dominion Bank
UBS AG UniCredit SpA
United Overseas Bank Limited Wells Fargo & Co
Westpac Banking Corporation
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Table A2: Predictive regressions: monthly returns of FX committee surveyed (FXS) dealer
banks on one-year basis swap rates and placebo tests

This table presents results from the following linear regressions:

1

τ
returnt+τ = β0 + β|bt|+ ϵt+τ ,

for daily and monthly observations. The dependent variables are one-month-ahead value- or equal-weighted
equity returns of 49 dealer banks surveyed by FX committees of New York, London, Tokyo, Toronto, Sydney,
Singapore and Hong Kong. Additional placebo tests use returns from five ETFs tracking the S&P500 index
(SPY), the global financial sector (IXG), the US financial sector (IYF), US broker-dealers and securities
exchanges (IAI), and US insurance companies (KIE). For monthly observations, five hedge fund index re-
turns are also included: one global composite index from BarclaysHedge (BCH), four indices from Hedge
Fund Research (HFR) tracking global composite, relative value arbitrage, global-macro, and macro-currency
strategies. All returns are net ones in percentage, as well as annualized (divided by τ = 1/12 as shown in
the regression specification). The independent variable |bt| is the cross-sectional average of absolute one-year
basis swap rates for EUR, JPY, GBP, AUD, CAD, and CHF against the dollar. Sample periods begin from
January 2009 and end at December 2019. Numbers in parentheses are Newey-West standard errors under
automatic bandwidth selection.

Panel A: daily observations

ret. (p.p.) FXS (vw) FXS (ew) ETF-SPY ETF-IXG ETF-IYF ETF-IAI ETF-KIE
(S&P500) (Gl. Fin.) (US Fin.) (US B&D) (US Insur.)

|b| (b.p.) 2.17 2.03 0.41 1.85 1.18 1.30 1.11
(0.82) (0.81) (0.41) (0.78) (0.70) (0.80) (0.73)

const. −33.3 −31.0 7.8 −26.2 −8.4 −10.6 −4.7
(15.2) (15.1) (8.9) (14.7) (13.5) (17.0) (14.5)

N obs. 2859 2859 2761 2761 2761 2761 2761
R2-adj. (%) 3.5 3.4 0.3 2.8 1.4 1.6 1.1

Panel B: monthly observations

ret. (p.p.) FXS (vw) FXS (ew) ETF-SPY ETF-IXG ETF-IYF ETF-IAI ETF-KIE
(S&P500) (Gl. Fin.) (US Fin.) (US B&D) (US Insur.)

|b| (b.p.) 1.71 1.58 0.35 1.66 0.96 1.23 0.97
(0.63) (0.64) (0.40) (0.67) (0.59) (0.78) (0.67)

const. −23.4 −21.7 9.3 −22.1 −3.4 −8.6 −1.7
(13.0) (12.9) (9.4) (13.4) (13.4) (18.3) (14.2)

N obs. 132 132 132 132 132 132 132
R2-adj. (%) 1.8 1.7 −0.5 1.7 0.3 0.7 0.2

ret. (p.p.) BCH HFR HFR HFR HFR
(Gl. Com.) (Gl. Com.) (Re. Val.) (Macro) (Macro. Cur)

|b| (b.p.) 0.13 0.08 0.09 −0.17 0.04
(0.14) (0.14) (0.10) (0.10) (0.11)

const. 3.5 3.6 4.7 5.3 0.2
(3.5) (3.3) (2.6) (2.9) (2.5)

N obs. 132 132 132 132 132
R2-adj. (%) −0.5 −0.6 −0.4 0.0 −0.7
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Table A3: Predictive regressions: monthly returns of FX committee surveyed dealer banks
on one-year basis swap rates adjusted by controls

This table presents results from the following linear regressions:

1

τ
returnt+τ = β0 + βbt + ϕ · controlt + ϵt+τ

for daily and monthly observations. The dependent variable is the one-month-ahead value-weighted equity
return of 49 dealer banks surveyed by FX committees of New York, London, Tokyo, Toronto, Sydney,
Singapore and Hong Kong. All returns are net ones in percentage, as well as annualized (divided by τ = 0.25
as specified in the regression equation). The independent variable bt is the cross-sectional average of absolute
one-year basis swap rates for EUR, JPY, GBP, AUD, CAD, and CHF against the dollar. Control variables
include the average smoothed earnings yield (E/P) and dividend yield (D/P) for the 49 dealer banks, the
effective Fed fund rate (FFR), and the CBOE volatility index (VIX). Sample periods begin from January
2009 and end at December 2019. Numbers in parentheses are Newey-West standard errors under automatic
bandwidth selection.

ret. (p.p.) Daily observations Monthly observations

b (b.p.) 2.17 1.15 1.81 1.71 1.02 1.53
(0.82) (0.64) (0.67) (0.63) (0.56) (0.59)

E/P 14.7 10.8
(8.9) (7.6)

D/P 1.28 0.41
(1.85) (2.22)

FFR 5.03 0.26 3.17 0.20
(6.99) (6.27) (6.59) (6.92)

VIX −0.44 1.95 −0.34 1.42
(1.11) (1.80) (1.44) (1.79)

const. −33.3 −128.2 −65.1 −23.4 −93.4 −47.4
(15.2) (68.3) (36.7) (13.0) (53.5) (36.2)

N obs. 2859 2859 2859 132 132 132
R2-adj. (%) 3.5 10.8 6.1 1.8 3.6 1.0
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