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Abstract

We derive new entropy and moment bounds for the stochastic discount factor (SDF).

Our results generalize existing bounds which exploit risk-adjusted measures of invest-

ment opportunities—such as Sharpe ratios or expected log returns—that are maximized

in the cross-section, across assets. By contrast, we can fix a single asset and optimally

exploit information in its true and risk-neutral return distributions. Applying the frame-

work to the S&P 500 index, we find that the θth SDF moment grows extremely rapidly

when θ > 1, and appears to diverge to infinity before θ = 2. But entropy measures and

the θth moments with θ ∈ (0, 1) are well-behaved theoretically and empirically, and can

be related to measures of market risk aversion and of the attractiveness of investment

opportunities.
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Asset prices are widely used to assess market expectations. Policymakers and practition-
ers talk of forward rates as indicators of expected future interest rates, commodity futures
prices as indicators of expected future commodity prices, breakeven inflation as an indicator
of expected future inflation, CDS rates as indicators of expected future default rates, implied
volatility as an indicator of expected future volatility, and so on. The appeal of doing so is
that these quantities, as asset prices, are almost continuously observable; they do not lean
on economists’ models; and they embody the collective beliefs of market participants. But
they may be distorted by risk: the indicators described above measure risk-neutral expected
future interest rates, risk-neutral expected future inflation, and so on, rather than the true
expectations that a forecaster would ideally like to know.

Hansen and Jagannathan (1991) introduced the idea that the importance of risk consid-
erations in asset pricing can be captured in a general way via the stochastic discount factor
(SDF), whose variability can be understood as an indication of the size of the gap between
true and risk-neutral probabilities, and hence as summarizing the importance of risk consid-
erations in pricing. Their work showed that the volatility of the SDF (rescaled to have unit
mean) is at least as large as the Sharpe ratio of any asset or strategy.

Hansen and Jagannathan also suggested, as an “important direction” for future research,
moving beyond means and variances to characterize the properties of SDFs more fully. As
a step in this direction, Snow (1991) derived, for arbitrary θ > 1, lower bounds on the θth
moment of the SDF in terms of the θ

θ−1th moments of assets’ returns.1 But θ
θ−1 is very

large when θ is close to 1, so that in this case the Snow bound depends on extremely high
moments of asset returns which are hard to measure in practice. (It may be for this reason
that the Snow bound has had limited influence.) This might seem surprising: If a riskless
asset is traded each period, we can perfectly infer the conditional mean of the SDF; it should
therefore be straightforward to estimate the unconditional first moment of the SDF using
the time series of interest rates. Why then is it so hard to restrict nearby moments?

In this paper, we introduce new bounds on the θth moment of the SDF, for arbitrary
θ ∈ R, and on SDF entropy. The bounds are completely general: we do not impose any
restrictions on the form of the SDF, nor do we assume that the market is complete. Like
the prior literature, we exploit the true distribution of returns, which we infer from the
time series of realized returns. Unlike the prior literature, we also exploit the risk-neutral
distribution, which is observable given a suitably rich collection of options traded on the asset

1Bansal and Lehmann (1997) and Alvarez and Jermann (2005) have also introduced variations on the
approach based on the concept of entropy. We connect to their work below.
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in question. As we noted above, the first moment of the SDF is revealed by observation of
the riskless rate, that is, of the risk-neutral first moment of returns. Our approach exploits
the fact that we can observe arbitrary moments of the risk-neutral distribution. This gives
us a crucial degree of freedom that enables us to derive stronger bounds than the prior
literature—bounds that are useful even when θ is close to one.

The approach leads us to stronger conclusions than have been reached by the prior liter-
ature, and the θ-close-to-one regime turns out to have surprising properties. In particular,
our empirical results show that the moments of the SDF rise exceedingly rapidly as θ rises
above one. Hansen and Jagannathan’s result is often described as showing that the SDF is
surprisingly volatile; our findings suggest that the SDF may have infinite volatility.2

This fact strikes at the heart of the vast empirical literature in financial economics based
on mean-variance analysis, dating back to the foundational theories of Markowitz (1952),
Sharpe (1964), and Lintner (1965), with early empirical tests by Black, Jensen, and Scholes
(1972) and Fama and MacBeth (1973). The more recent literature3 adopts a multifactor
mean-variance approach motivated by the work of Merton (1973) and Ross (1976) and un-
derpinned by the framework of Chamberlain and Rothschild (1983) and Hansen and Richard
(1987). If the variance of the SDF is unbounded then this framework breaks down, and with
it the statistical foundation for testing whether a collection of factors is mean-variance ef-
ficient, either in its traditional form (Gibbons, Ross, and Shanken, 1989) or in more recent
high-dimensional variants (Fan, Liao, and Yao, 2015; Bryzgalova, Huang, and Julliard, 2023;
Chernov, Kelly, Malamud, and Schwab, 2025).

We show that the bounds on the θth moment of the SDF have particularly good properties
when θ ∈ (0, 1). These have a natural economic interpretation—they supply bounds on the
willingness-to-pay (WTP) to participate in risky financial markets of an investor with power
utility and relative risk aversion at least one—and we find lower bounds on WTP that take
plausible values in the data.

Analogously, the Hansen–Jagannathan bound relates another measure of the attractive-
ness of the investment opportunity set—the maximum attainable Sharpe ratio—to the vari-

2We write “suggest” and “may have” because we show, as a matter of theory, that bounds on the θth
moment of the SDF have bad statistical properties when θ < 0 or θ > 1. Empirically, we find that the lower
bound diverges when θ exceeds about 1.7. This is true even though we are careful to make conservative
choices in our empirical analysis. Plausible alternatives to our approach (such as using mid-market prices
rather than bid and offer prices) give even more extreme results than these. Sections 3.1, 3.2, and 3.3 describe
the steps we take to ensure that our empirical approach is conservative.

3For example, Fama and French (2015), Hou, Xue, and Zhang (2015), Campbell, Giglio, Polk, and Turley
(2018), and Kozak, Nagel, and Santosh (2020).
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ance of the SDF. Sharpe ratios make sense from the perspective of investors with quadratic
utility4 because such investors care only about mean and variance, and not about any higher
moments of returns. But the quadratic utility assumption is well known to have strange
implications: for example, an investor with quadratic utility has increasing absolute risk
aversion, and so invests fewer dollars in risky assets as he or she becomes wealthier. This is,
to put it mildly, an implausible depiction of investor behavior.5 And, aside from this issue,
our theoretical results reveal a sense in which variance bounds on the SDF are inherently
unstable—even, in principle, if we are given an arbitrarily long time series of data.

Our results are related to a literature that has argued that short positions in options have
extremely high Sharpe ratios on average.6 One could try to incorporate the information in
option prices by plugging in the returns on option strategies into the Hansen–Jagannathan
or Snow bounds, as Liu (2021) does, for example. But, as Broadie, Chernov, and Johannes
(2009) emphasize, option returns are unstable, highly skewed and fat-tailed, sensitive to
outliers. Given the relatively short time series of observed option returns, these facts make
them poorly suited for empirical work: for example, over the 1996–2022 sample period for
which we observe option prices, the average realized net return on a one-month index put
option struck 10% out of the money is −17.6%, but the standard error on this quantity is
huge, at 51.6%.

We do not use options in this way. Instead, we study the risk-neutral distribution directly.
Rather than using time series averages of option returns, we exploit time series averages of
(appropriately rescaled) option prices. These are much less noisy, and they directly reveal
the conditional risk-neutral distribution: for example, based on the 26 years of available
option price data, we estimate that the time-series average risk-neutral probability of a 10%
decline in the market over the next month is 6.56%, with a standard error of 0.22%.

By contrast, realized returns on the market only provide a noisy measure of its true
unconditional distribution (and on their own they tell us nothing at all about the true con-
ditional distribution). Indeed, the primary empirical challenge we face is not the short time

4Alternatively, Sharpe ratios could be justified if returns followed a distribution in the elliptical family.
But elliptical distributions are symmetrical about their means, unlike empirically observed return distribu-
tions.

5For a comprehensive discussion of the demerits of mean–variance preferences, see Borch (1969), Feldstein
(1969), Samuelson (1970), Tsiang (1972), and Levy (1974).

6See, for example, Jackwerth (2000), Coval and Shumway (2001), Bondarenko (2003), Jones (2006),
Driessen and Maenhout (2007), Goetzmann, Ingersoll, Spiegel, and Welch (2007), and Santa-Clara and
Saretto (2009). In a somewhat different direction, Bates (1991) is an influential early study of tail information
in option prices.
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series of option prices, but the short time series of realized market returns. Even when we
use our longest time series of realized returns, we find that the uncertainty associated with
estimating the true distribution is greater than that associated with the risk-neutral distri-
bution. In our longest dataset, which starts in 1872, the time-series average true probability
of a 10% decline in the market over the next month is 1.82%—but the standard error on
this estimate, at 0.32%, is larger than that for the risk-neutral calculation of the previous
paragraph, even with 150 years of data.

A century and a half later, it is not the shortness of the option price series but the
shortness of the realized return series that remains the central empirical challenge; and it is
one that is inherent to any approach that uses the historical time series to make inferences
about population moments.

Structure of the paper. We find it helpful to derive and discuss our results using the
language of cumulant-generating functions (CGFs). We introduce these, discuss their general
properties, and provide some concrete examples of CGFs in equilibrium models, in Section 1.
We derive our main theoretical results, including moment bounds, entropy bounds, and
their connection to measures of market risk aversion and of the attractiveness of investment
opportunities, in Section 2. We discuss the data, and certain important issues that arise in
finite samples, in Section 3. We take the theory to the data in Section 4, and conclude in
Section 5.

1 Cumulant-generating functions

This section introduces CGFs in their conditional and unconditional forms.
Fix some asset, whose gross return from time t to time t+ 1 we write as Rt+1. (For the

purposes of the theory, Rt+1 can be an arbitrary return; when we turn to the data, we will set
it equal to the return on a broad stock market index.) The gross riskless rate from time t to
t+1 is Rf,t+1, which is known at time t. Finally, write Mt+1 for a stochastic discount factor
(SDF) that provides the time t prices of payoffs made at time t + 1, so that in particular
Et (Mt+1Rt+1) = 1 and Et (Mt+1Rf,t+1) = 1.

We define the conditional CGF

κt(θ1, θ2) ≡ logEt
[
(Mt+1Rf,t+1)

θ1 (Rt+1/Rf,t+1)
θ2
]
. (1)

The curved surface shown in the left panel of Figure 1 illustrates how a CGF varies with
θ1 and θ2. By definition, the CGF goes through the origin: κt(0, 0) = 0. The properties of
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Figure 1: The cumulant-generating function (1). The thick contour in the right panel is the
zero contour.

the SDF further restrict the form of the CGF. As Et (Mt+1Rf,t+1) = 1, we have κt(1, 0) = 0;
and as Et (Mt+1Rt+1) = 1, we have κt(1, 1) = 0. Thus the CGF is pinned to zero at the
origin, at (1, 0), and at (1, 1). The contour plot underneath and in the right panel of Figure 1
conveys the same information. The thick contour indicates the set of points at which the
CGF equals zero.

Three lines are indicated on the surface and on the contour plot. Two of them—the red
and the green—are observable from the data. Each represents a convex function. Indeed,
the entire CGF surface is convex: we exploit this important and general property below to
infer properties of the third, blue, line. Whereas equilibrium models of financial markets
specify the entire surface κt(θ1, θ2) for arbitrary θ1 and θ2, the goal of this paper is to focus
on aspects of the surface that can be determined from observable data without positing a
particular functional and distributional form for Mt+1 and Rt+1.

Return cumulants. The green line traces out the curve

κt(0, θ2) = logEt
[
(Rt+1/Rf,t+1)

θ2
]

(2)

as θ2 varies. This function encodes the cumulants of the log risky return. For example, by
differentiating the right-hand side of equation (2) with respect to θ2, it is easy to check that
the mean and variance of the log excess return reflect, respectively, the slope and curvature
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of the CGF at the origin:

Et log (Rt+1/Rf,t+1) =
∂ κt
∂θ2

(0, 0) and vart log (Rt+1/Rf,t+1) =
∂2 κt
∂θ22

(0, 0) .

While the cumulants (and hence moments) of log returns are captured by the behaviour
of the CGF local to the origin, the cumulants of the simple return depend on its shape away
from the origin. For example, κt(0, 1) = logEt (Rt+1/Rf,t+1) is the equity premium and
eκt(0,2) − e2κt(0,1) is the variance of Rt+1/Rf,t+1.

Risk-neutral return cumulants. The red line traces out the curve

κt(1, θ2) = logEt
[
Mt+1Rf,t+1 (Rt+1/Rf,t+1)

θ2
]

(3)

as θ2 varies. This is observable if Rt+1 is the return on an asset on which options are traded.
To see this, it will be convenient to define the risk-neutral expectation operator E∗t , which is
defined by the property that

1

Rf,t+1

E∗t Xt+1 ≡ Et (Mt+1Xt+1)

for any tradable payoff Xt+1 that is received at time t+ 1. The price of the payoff Xt+1 can
be expressed either in terms of the true expectation operator Et and the SDF, or in terms
of the risk-neutral expectation E∗t and the riskless interest rate.

Equation (3) can be rewritten in this notation as

κt (1, θ2) = logE∗t
[
(Rt+1/Rf,t+1)

θ2
]
. (4)

Thus κt(0, θ2)measures the moments of the excess return under the true probability measure,
as in equation (2), and κt(1, θ2) measures the moments of the excess return under the risk-
neutral measure, as in equation (4).

We can evaluate κt(1, θ) at different values of θ using observable option prices. As we
show in the appendix (following Carr and Madan (2001)),

κt (1, θ) = log

{
1 + θ(θ − 1)

[∫ 1

0

Kθ−2 putt(KRf,t+1) dK +

∫ ∞
1

Kθ−2 callt(KRf,t+1) dK

]}
,

(5)
where putt(K) is the time t price of a European put on the risky return Rt+1 with strike K,
expiring at time t + 1, and callt(K) is the corresponding call price. This formula allows us
to incorporate the information in option prices across the full range of traded strikes.

Throughout the paper, we think in terms of options on returns rather than options on
prices. Rescaling in this way means that the option prices we work with do not drift with the
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level of the underlying asset: they will be stationary if the underlying returns are stationary.
Specifically, we divide the prices of options on the level of the S&P 500 index—in the case
of call options, these are the prices of assets with payoffs max {0, St+1 −KSt} for a range
of K—by the spot price of the asset, St, to infer the price of an option on the return (with
payoff max{0, St+1

St
−K} in the call option case). As is customary in the literature, we neglect

the influence of dividends, so that Rt+1 = St+1/St. The average S&P 500 dividend yield over
our option sample period is below 2% annually, so this is a minor assumption at the one-year
horizon and even more minor at the one-month horizon.

If θ is large and positive in equation (5), the prices of deep-out-of-the-money calls (that is,
calls with high strikes) acquire particular significance; conversely, if θ is large in magnitude
and negative, the prices of deep-out-of-the-money puts (that is, puts with low strikes) are
important.

On any given date t, we take the range of observed call and put option prices and calculate
the above function for any θ of interest. Having done so, the derivatives of κt(1, θ2) at θ2 = 0

reveal the risk-neutral expectations of the log excess return log (Rt+1/Rf,t+1),

E∗t log (Rt+1/Rf,t+1) =
∂ κt
∂θ2

(1, 0) .

Similarly, the second derivative of κt(1, θ2) at θ2 = 0 reveals the risk-neutral variance of the
log excess return:

var∗t log (Rt+1/Rf,t+1) =
∂2 κt
∂θ22

(1, 0) . (6)

Other notions of the (risk-neutral) variability of the return can likewise be interpreted as
measures of the convexity of the CGF surface along the line θ1 = 1.7 For example, if Rt+1 is
the return on the S&P 500 index, then the level of the VIX index at time t satisfies

VIX2
t = −2E∗t log (Rt+1/Rf,t+1) = −2

∂ κt
∂θ2

(1, 0), (7)

7This is obvious in the case of (6), but it is also true for (7), (8), and (9) because of the fact that κt(1, 0)

and κt(1, 1) are both equal to zero. In more detail: as κt(1, 2) = [κt(1, 2)− κt(1, 1)] − [κt(1, 1)− κt(1, 0)],
the right-hand side of (8) is a convexity measure that compares the average slope of κt(1, θ2) between θ2 = 1

and θ2 = 2 to its average slope between θ2 = 0 and θ2 = 1. Meanwhile, the right-hand sides of (7) and (9)
are each proportional to weighted averages of the curvature of the risk-neutral CGF evaluated in the range
from θ2 = 0 to θ2 = 1, because

−2
∂ κt
∂θ2

(1, 0) =

∫ 1

0

2(1− θ2)
∂2 κt
∂θ22

(1, θ2) dθ2 and
∂ κt
∂θ2

(1, 1) =

∫ 1

0

θ2
∂2 κt
∂θ22

(1, θ2) dθ2.

Each of these equations follows by integrating by parts and using the fact that κt(1, 0) = κt(1, 1) = 0.
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the level of the SVIX index (Martin, 2017) satisfies

log(1 + SVIX2
t ) = log [1 + var∗t (Rt+1/Rf,t+1)] = κt(1, 2), (8)

and the LVIX index (Gao and Martin, 2021; Gandhi, Gormsen, and Lazarus, 2025) satisfies

LVIXt = E∗t [(Rt+1/Rf,t+1) log(Rt+1/Rf,t+1)] =
∂ κt
∂θ2

(1, 1). (9)

SDF cumulants. Lastly, the blue line in Figure 1 traces out the curve

κt(θ1, 0) = logEt
[
(Mt+1Rf,t+1)

θ1
]

(10)

as θ1 varies. It summarizes the moments of the SDF. It is not directly observed but, as noted
above, it must pass through zero when θ1 equals zero or one.

1.1 Conditional and unconditional CGFs

While the conditional risk-neutral CGF κt(1, θ) is observable given suitable option price data
at time t, as in (5), the corresponding conditional true CGF κt(0, θ) is not. We therefore work
unconditionally in our empirical work below. We drop subscripts t to indicate unconditional
CGFs:

κ(θ1, θ2) ≡ logE
[
(Mt+1Rf,t+1)

θ1 (Rt+1/Rf,t+1)
θ2
]
.

By the law of iterated expectations, the properties κ(0, 0) = κ(1, 0) = κ(1, 1) = 0 also hold
unconditionally. The unconditional true CGF of (log) returns is

κ(0, θ) = logE
[
(Rt+1/Rf,t+1)

θ
]
. (11)

The unconditional counterpart of the risk-neutral CGF is

κ(1, θ) = logE
[
Mt+1Rf,t+1 (Rt+1/Rf,t+1)

θ
]

= logE
(
Et
[
Mt+1Rf,t+1 (Rt+1/Rf,t+1)

θ
])

= logE
(
E∗t
[
(Rt+1/Rf,t+1)

θ
])
. (12)

To streamline the notation, we define an operator E∗ which satisfies8

E∗X ≡ E (E∗t X)

8The operator E∗ appears, in different notation, in unconditional moment restriction 1 of Hansen and
Jagannathan (1991, p. 231), which applies to an unconditional expectation of prices, i.e., to a unconditional
expectation of conditional risk-neutral expectations.
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for any suitable random variableX. This is notationally convenient as it will allow us to state
the unconditional counterparts to our conditional results simply by dropping subscripts t.
For example, we can write the unconditional risk-neutral CGF (12) in this notation as

κ(1, θ) = logE∗
[
(Rt+1/Rf,t+1)

θ
]
. (13)

1.2 CGFs in equilibrium

Equilibrium models pin down the form of the CGF. In our empirical work, we will not want
to make any assumptions about the shape of the CGF; nonetheless, it may be helpful to
see some examples of equilibrium CGFs to make things concrete. Derivations of the CGFs
discussed in this section are provided in the appendix.

Example 1. IfMt+1 and Rt+1 are jointly lognormal, then the CGF surface is quadratic. To
see this, note that we can writeMt+1Rf,t+1 = e−

1
2
λ2−λZ and Rt+1/Rf,t+1 = eµ−

1
2
σ2+σW , where

W and Z are standard Normal with correlation ρ and λ can be interpreted9 as the maximal
attainable Sharpe ratio. (The constants λ, µ, and σ can depend on time-t information, but
we suppress subscripts t to simplify the notation.) The CGF is

κt(θ1, θ2) = µθ2 (1− θ1) +
1

2
λ2θ1 (θ1 − 1) +

1

2
σ2θ2 (θ2 − 1) (14)

after imposing the condition µ = ρσλ, which is implied by κt(1, 1) = 0 (that is, by the fact
that Et(Mt+1Rt+1) = 1).

The two observable slices of the CGF surface are therefore

κt(0, θ2) = µθ2 +
1

2
σ2θ2(θ2 − 1) (15)

and
κt(1, θ2) =

1

2
σ2θ2(θ2 − 1) . (16)

Knowledge of the true distribution of returns (15) amounts to knowing µ and σ, while the
information in option prices supplies only σ, via the function (16). Thus in this lognormal
case, one learns nothing new from option prices. This property fails in general, but it may
help to explain the lack of interest in option prices in much of the mainstream empirical
finance literature.

Example 2. If Mt+1 and Rt+1 follow jump-diffusions, useful information regarding the
SDF can be lost without option prices. Suppose that Mt+1Rf,t+1 = e−

1
2
λ2−λZ−ωJ1 (1 + J1)

N

9This is the conventional interpretation: it is exact in continuous time and approximate in discrete time.
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and that Rt+1/Rf,t+1 = eµ−
1
2
σ2+σW−ωJ2 (1 + J2)

N , whereW and Z are standard Normal with
correlation ρ and the jump arrival rate is ω, so that the number of jumps, N , has a Poisson
distribution with parameter ω. Assume, for simplicity, that the jump size is deterministic,
so that J1 and J2 represent the proportional impact of a jump on the SDF and risky asset,
respectively. (If jumps represent bad news, then we might have J1 positive and J2 negative,
for example; in any case, we always require 1 + J1 and 1 + J2 to be positive.) The CGF is
then

κt(θ1, θ2) = µθ2(1− θ1) +
1

2
λ2θ1(θ1 − 1) +

1

2
σ2θ2(θ2 − 1) +

+ ω
[
(1 + J1)

θ1 (1 + J2)
θ2 − (1 + J1θ1)(1 + J2θ2)

]
(17)

after imposing the condition that ρσλ = µ + ωJ1J2, which is implied by κt(1, 1) = 0. The
presence of jumps is reflected in the terms which are exponential in θ1 and θ2, but the CGF
is defined for all θ1 and θ2. This property—which also holds in disaster models such as Barro
(2006)—will fail in our next two examples.

The two observable slices of the CGF surface are now

κt(0, θ2) = µθ2 +
1

2
σ2θ2(θ2 − 1) + ω

[
(1 + J2)

θ2 − θ2J2 − 1
]

(18)

and
κt(1, θ2) =

1

2
σ2θ2(θ2 − 1) + ω(1 + J1)

[
(1 + J2)

θ2 − θ2J2 − 1
]
. (19)

In this case, the true distribution of returns, as embodied in (18), reveals µ, σ, ω, and J2,
but not the parameter J1 which measures the size of an SDF jump shock. We can however
infer J1 from observing option prices, and hence the function (19).

Example 3. Geweke (2001) and Weitzman (2007) have shown that the predictions of
conventional models can change dramatically if agents must learn model parameters. To
illustrate this point, we adapt Example 2. As our goal is illustrative, we simplify matters by
assuming that uncertainty is driven solely by jumps with no diffusion component, that is,
σ = λ = 0, so that in the absence of learning the CGF (17) would take the form

κt(θ1, θ2) = µθ2(1− θ1) + ω
[
(1 + J1)

θ1 (1 + J2)
θ2 − (1 + J1θ1)(1 + J2θ2)

]
, (20)

which is defined for all θ1 and θ2, so that all moments of the risky return and SDF exist.
To show how parameter uncertainty changes things,10 we now suppose that agents are

10We focus on learning about jump intensities for tractability. Geweke (2001) and Weitzman (2007) have
exhibited even more dramatic examples in lognormal models without jumps in which a representative agent
performs Bayesian updating about the variance of log consumption growth. In this case every moment of
the SDF may be unbounded, with even the risk-free rate undefined.
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uncertain about the value of ω: they perceive it as distributed according to an exponen-
tial distribution with mean ω. We can then write11 Mt+1Rf,t+1 = (1− ωJ1) (1 + J1)

N and
Rt+1/Rf,t+1 = eµ (1− ωJ2) (1 + J2)

N , and the CGF is

κt(θ1, θ2) = θ1 log (1− ωJ1)+θ2 (µ+ log (1− ωJ2))−log
(
1− ω

[
(1 + J1)

θ1 (1 + J2)
θ2 − 1

])
.

(21)
We require that ωJ1 < 1, ωJ2 < 1, and ω [(1 + J1)(1 + J2)− 1] < 1 so that the relevant
expectations are well defined.

Suppose, for example, that a jump represents bad news, so that J1 > 0 and −1 < J2 < 0.
Then equation (21) implies that the true and risk-neutral CGFs, κt(0, θ) and κt(1, θ), diverge
for sufficiently negative values of θ, so the corresponding true and risk-neutral moments of
the risky return are unbounded. Consideration of the function κt(θ, 0) shows that sufficiently
positive moments of the SDF also diverge: the θth moment is finite if and only if θ is less
than log(1+1/ω)

log(1+J1)
. The requirement that ωJ1 < 1 implies that log(1+1/ω)

log(1+J1)
> 1, so that the θth

moment of the SDF is well-defined for θ ≤ 1 but diverges once θ exceeds some critical value
that is above 1. (Alternatively, if jumps are good news, −1 < J1 < 0 and J2 > 0, then the
θth moment of the SDF is well-defined for θ ≥ 0 but diverges below some critical value of θ
that is less than zero.)

Example 4. We now exhibit an example in which the higher moments of the SDF are
unbounded even though all return moments are well-behaved under both the true and risk-
neutral measures. Specifically, we consider the Brownian limit of the heterogeneous-belief
equilibrium model of Martin and Papadimitriou (MP, 2022, Section III). We assume that
the median agent at time t = 0 has correct beliefs, so calculate the CGF surface from this
agent’s perspective. The two observable slices are

κt(0, θ2) =
1 + δ

2δ
σ2θ2 +

1

2
σ2θ22 (22)

and
κt(1, θ2) =

1 + δ

2δ
σ2θ2(θ2 − 1). (23)

Here σ is return volatility and δ > 0 is a parameter that controls the amount of disagreement,
and hence speculation.12 Smaller values of δ correspond to greater disagreement: the cross-
sectional standard deviation of expected returns across agents equals σ/

√
δ.

11The factor 1 − ωJ1 differs from the corresponding factor e−ωJ1 in the case without learning: they
are determined in each case by the requirement that Et (Mt+1Rf,t+1) = 1. Similarly, the factor 1 − ωJ2
in Rt+1/Rf,t+1 ensures that EtRt+1/Rf,t+1 equals eµ, just as it does in the case without learning. The
constant µ is determined in terms of the other parameters by the equilibrium requirement that κt(1, 1) = 0.

12The parameter δ is referred to as θ by MP. We focus on the Brownian limit to emphasize that option
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As in Example 1, the observable slices (22) and (23) are each individually quadratic,
indicating that returns are lognormal under both the (perceived) true and risk-neutral distri-
butions. Unlike Example 1, however, they have different amounts of curvature, ∂2 κt

∂θ22
(0, θ2) 6=

∂2 κt
∂θ22

(1, θ2), reflecting the fact that true and risk-neutral volatility differ (that is, the MP
model generates a variance risk premium). This is, therefore, a setting in which an econo-
metrician who neglects option prices is throwing away useful information. In Example 1, the
SDF Mt+1 and return Rt+1 were jointly lognormal, and as a result the entire CGF surface
was a quadratic form. Here, by contrast, the CGF surface takes the form

κt(θ1, θ2) =
1

2

[
1 + δ

δ
σ2 (θ2 − θ1) +

1 + δ

1 + δ − θ1
σ2 (θ2 − θ1)2 + log

1 + δ

1 + δ − θ1
− θ1 log

1 + δ

δ

]
.

(24)
It follows from (24) that the moments of the SDF are given by

κt(θ, 0) =
(1 + δ)2θ(θ − 1)σ2

2δ(1 + δ − θ) +
1

2
log

1 + δ

1 + δ − θ −
1

2
θ log

1 + δ

δ
, (25)

so the (1 + δ)th and higher moments of the SDF are unbounded. In particular, the second
moment is unbounded if δ ≤ 1: in this case MP show that arbitrarily large Sharpe ratios
can be attained by aggressively shorting out-of-the-money options.

Summing up, these examples make two important points. First, option prices are useful.
Other than in the lognormal special case, they convey information that is embodied in the
risk-neutral slice of the CGF surface and not revealed by the true distribution of returns.
Second, it is possible for the SDF to have unbounded higher moments in equilibrium models
with parameter learning or heterogeneous beliefs. In the MP model, for example, there are
calibrations in which the volatility of the SDF is unbounded and in which strategies can
be constructed with arbitrarily high Sharpe ratios (Hansen and Jagannathan, 1991). As
MP emphasize, however, these strategies need not be remotely attractive to investors with
conventional utility functions, due to their unappealing higher-moment properties.

In such models, we have the luxury of knowing the full equilibrium and hence the CGF
surface (e.g., the function (24) in the heterogeneous-agent example). The econometrician,
however, can only observe two slices—(22) and (23) in this example—of this surface. We
now show how to derive empirically implementable bounds on the moments of the SDF that
only exploit information in these two observable slices.

prices can be informative even in the benign case in which returns are lognormal under the risk-neutral
measure and under every investor’s perceived true measure (albeit different investors perceive different mean
log returns). MP also study a non-lognormal Poisson limit in which there is a volatility smile and the SDF
has infinite variance in every calibration.
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2 New bounds for the stochastic discount factor

We introduce our main results, the moment and entropy bounds, in Sections 2.1 and 2.2.
We show that they have a natural economic interpretation in Section 2.3.

2.1 Moment bounds

Our first result exploits the convexity of the CGF surface to generalize the Hansen and
Jagannathan (1991) and Snow (1991) bounds.

Result 1. For θ < 0 or θ > 1, we have

Et
[
(Mt+1Rf,t+1)

θ
]
≥ sup

Rt+1

sup
y∈R

{
E∗t
[(

Rt+1

Rf,t+1

)y]}θ{
Et

[(
Rt+1

Rf,t+1

) θ
θ−1

y
]}1−θ

. (26)

For θ ∈ (0, 1), we have

Et
[
(Mt+1Rf,t+1)

θ
]
≤ inf

Rt+1

inf
y∈R

{
E∗t
[(

Rt+1

Rf,t+1

)y]}θ{
Et

[(
Rt+1

Rf,t+1

) θ
θ−1

y
]}1−θ

. (27)

Equivalently,

κt(θ, 0) ≥ sup
Rt+1

sup
y∈R

θκt(1, y) + (1− θ)κt
(
0,

θ

θ − 1
y

)
for θ < 0 or θ > 1 (28)

and
κt(θ, 0) ≤ inf

Rt+1

inf
y∈R

θκt(1, y) + (1− θ)κt
(
0,

θ

θ − 1
y

)
for θ ∈ (0, 1). (29)

These inequalities also hold unconditionally (that is, dropping the ts on the true and
risk-neutral expectation operators).

Proof. Let Rt+1 be an arbitrary gross return. We will prove (26) and (27) by considering
the function κt(θ1, θ2) evaluated at the points (θ, 0), (1, y), and (0, x). Having done so,
the unconditional statements follow by applying the same proof to κ(θ1, θ2) rather than
κt(θ1, θ2).

We regard y as arbitrary and choose x so that the three points lie on a line, to enable
us to invoke convexity of the CGF. This requires that x = θ

θ−1y. We adopt this notation
throughout the proof. The identity of the middle one of the three points depends on whether
θ < 0, θ > 1, or θ ∈ (0, 1), so we handle these cases separately.
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θ > 1. We can write (1, y) as the convex combination (1, y) = 1
θ
(θ, 0)+

(
1− 1

θ

)
(0, x). By

convexity of the CGF, this implies that

κt(1, y) ≤
1

θ
κt(θ, 0) +

(
1− 1

θ

)
κt(0, x)

or (rearranging and using the fact that x = θ
θ−1y)

κt(θ, 0) ≥ θκt(1, y) + (1− θ)κt
(
0,

θ

θ − 1
y

)
. (30)

Equivalently, exponentiating and using the definition of κt(·, ·), we have

Et
[
(Mt+1Rf,t+1)

θ
]
≥
{
E∗t
[(

Rt+1

Rf,t+1

)y]}θ{
Et

[(
Rt+1

Rf,t+1

) θ
θ−1

y
]}1−θ

. (31)

As y and Rt+1 are arbitrary, inequality (26) follows.
θ < 0. We write (0, x) as the convex combination (0, x) = 1

1−θ (θ, 0) +
(
1− 1

1−θ

)
(1, y). It

follows by convexity of the CGF that

κt(0, x) ≤
1

1− θ κt(θ, 0) +
(
1− 1

1− θ

)
κt(1, y) . (32)

This inequality can be rearranged to give (30) above, and hence (31), from which the result
follows because y is arbitrary.

θ ∈ (0, 1). We write (θ, 0) as the convex combination (θ, 0) = (1− θ)(0, x) + θ(1, y). By
convexity of the CGF, and the fact that x = θ

θ−1y, it follows that

κt(θ, 0) ≤ θκt(1, y) + (1− θ)κt
(
0,

θ

θ − 1
y

)
. (33)

Exponentiating, it follows that

Et
[
(Mt+1Rf,t+1)

θ
]
≤
{
E∗t
[(

Rt+1

Rf,t+1

)y]}θ{
Et

[(
Rt+1

Rf,t+1

) θ
θ−1

y
]}1−θ

.

As y and Rt+1 are arbitrary, inequality (27) follows.

The left panel of Figure 2 illustrates the idea behind the proof of Result 1. We imagine
ourselves standing on the blue line at the point (θ, 0) and looking across the CGF surface
towards the points (0, θ

θ−1y) and (1, y), which lie on the green and red lines respectively.
Empirically, we will work unconditionally; the convexity of the CGF surface then supplies
bounds on κ(θ, 0) in terms of κ(0, θ

θ−1y) (which is observable based on the time series of
realized returns) and κ(1, y) (which is observable based on option prices).
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0 1 θ

0
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θ

θ-1
y

θ1

θ2

(a) The case of general y.

0 1 θ

0

1

θ

θ-1

θ1

θ2

(b) The case y = 1 recovers the Snow bound,

which fails to exploit information in the risk-

neutral distribution because κt(1, 1) ≡ 0.

Figure 2: The use of convexity in the proof of Result 1.

In particular, if we set y = 1 in inequalities (26) and (27) then we recover the Snow
(1991) bounds:13

E
[
(Mt+1Rf,t+1)

θ
]
≥ sup

Rt+1

{
E

[(
Rt+1

Rf,t+1

) θ
θ−1

]}1−θ

for θ < 0 or θ > 1 (34)

and the reverse inequality (with an infimum rather than a supremum) for θ ∈ (0, 1). This
is the special case, illustrated in the right panel of Figure 2, in which, by looking in a fixed
direction through the point (1,1), we fail to use any nontrivial information in the risk-neutral
distribution. (Recall that κ(1, 1) = 0 in any economy because E(Mt+1Rf,t+1) = 1.) In the
case y = 1 and θ = 2, for example, inequality (34) simplifies to

E
[
(Mt+1Rf,t+1)

2] ≥ sup
Rt+1

{
E

[(
Rt+1

Rf,t+1

)2
]}−1

. (35)

The Hansen and Jagannathan (1991) bound follows by applying this inequality to the gross
return Rt+1 with minimum second moment.14

13Orłowski, Sali, and Trojani (2018) point out that convexity of the joint CGF of Mt+1 and Rt+1 can
be used in this way to derive existing bounds in the literature. The idea of using CGF convexity to derive
bounds also appears, in a different context, in Martin (2013a,b,c).

14This return satisfies
{
E
[(

Rt+1

Rf,t+1

)2]}−1
= 1 + max. Sharpe ratio2 (Hansen and Richard, 1987). The
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The two panels of Figure 2 make two points. First, they illustrate the novel feature of
Result 1 that, by using the information in option prices, we can “look around”, viewing y as
a free parameter that can be optimized to deliver sharp bounds on κ(θ, 0). When y is very
large in magnitude, for example, the bounds exploit information about the extreme tails of
the risk-neutral distribution. (Turning this round, an econometrician may wish to restrict
the range of values of y under consideration in order to avoid using extreme tail information,
if this is felt to be unreliable for some reason. We discuss this possibility further below.)

Second, the right panel shows that constraining y = 1—that is, “looking through the
point (1,1)”, as the prior literature does—is particularly problematic when θ is close to 1,
because in this case the Snow bound (34) relates the θth moment of the SDF to a very
large positive (if θ > 1) or large negative (if θ < 1) moment of returns, which (in either
case) is hard to estimate empirically. As our bound does not require this constraint, it is
well-behaved when θ is close to one, and we will show below that the θth moment of the
SDF exhibits interesting properties in this regime. More generally, however, the ability to
choose y optimally supplies new insights even in the case θ = 2, as we will now see.

2.1.1 Instability of volatility bounds

Setting θ = 2 in Result 1 and taking logs, we have a lower bound on the second moment of
the SDF:

κ(2, 0) ≥ sup
y∈R

2κ(1, y)− κ (0, 2y) . (36)

The right-hand side of (36) features the difference of two convex functions.15 The maximiza-
tion problem on the right-hand side is therefore not in general well-behaved. This issue is
not special to the case θ = 2: the same problem arises for any θ > 1 or θ < 0, as the bound
(28) shows.

It is often assumed that the risky return and SDF are conditionally jointly lognormal.
In this special case, the bound (36) is (conditionally) well-behaved: with the CGF given
by (14), inequality (36) becomes

κt(2, 0) ≥ −σ2y2 − 2µy, (37)

and as there is a negative coefficient on the quadratic term, the right-hand side has an
interior maximum in y.

Hansen–Jagannathan bound follows: var[Mt+1Rf,t+1] = E[(Mt+1Rf,t+1)2]− 1 ≥ max. Sharpe ratio2.
15Each of κ(1, y) and κ(0, 2y) is a CGF, and CGFs are always convex.
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But this does not hold in general, even if true and risk-neutral returns are each individ-
ually known to be lognormally distributed so that κt(1, y) and κt(0, y) are each quadratic.
For example, in the Martin and Papadimitriou (2022) model with CGF (24), inequality (36)
becomes

κt(2, 0) ≥
1− δ
δ

σ2y2 − 2(1 + δ)

δ
σ2y . (38)

If δ ≤ 1, the right-hand side of (38) can be made arbitrarily large by sending y to minus
infinity. This implies that SDF volatility is infinite. Within the MP model, the arbitrarily
high Sharpe ratios attainable via option-based strategies reveal this fact without needing to
know the full equilibrium or the precise form of the CGF given in (24).

While the MP model is merely a proof of concept—which we mention here, together with
the learning-based models of Example 3, to encourage readers to question their assumptions
about the finiteness of SDF variance—our empirical results below are consistent with a
substantial empirical literature that has argued that short positions in deep-out-of-the-money
options can indeed earn very high Sharpe ratios (Jackwerth, 2000; Coval and Shumway, 2001;
Bondarenko, 2003; Jones, 2006; Driessen and Maenhout, 2007; Goetzmann et al., 2007; Santa-
Clara and Saretto, 2009; Broadie et al., 2009).

The next result, whose proof is in the Appendix, shows that the situation is different for
moments between zero and one.

Result 2. The bounds in Result 1 are well-behaved when θ ∈ (0, 1), in the sense that the
minimization problem over y on the right-hand side of inequality (27) has a unique interior
minimum.

These intermediate moments, with θ ∈ (0, 1), are therefore a reliable object for em-
pirical study. We can continue to think of such bounds as saying that the SDF must be
sufficiently variable in some sense.16 For example, an upper bound on κ(1/2, 0), and hence
on E

√
Mt+1Rf,t+1, gives a lower bound on var

√
Mt+1Rf,t+1 = 1 −

(
E
√
Mt+1Rf,t+1

)2. In
Section 2.3, we show how to interpret these intermediate moments as measures of the at-
tractiveness of investment opportunities.

The bounds are more sensitive to right-tail behavior of the SDF when θ ∈ (0, 1) takes
relatively larger values, and to left-tail behavior of the SDF when θ takes relatively smaller
values. At either end of the interval (0, 1), Result 1 becomes trivial (because the zeroth

16When the SDF is highly variable, its CGF—the blue line in Figure 1—is highly convex. As the CGF is
constrained to equal zero when θ equals 0 or 1, a highly convex CGF is associated with small (that is, more
negative) values of SDF moments when θ ∈ (0, 1).
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and first moment of the SDF are each pinned down). Nonetheless, it is possible to derive
useful bounds on the gradient of κ(θ, 0) at the two end points, and these gradients can be
interpreted in terms of familiar entropy measures.

2.2 Entropy bounds

Given a random variable, X, Theil (1967) introduced two entropy measures. The first is
defined as

L
(1)
t (X) ≡ Et (X logX)− (EtX) log (EtX) ,

and the second measure is defined as

L
(2)
t (X) ≡ log (EtX)− Et (logX) .

We define the corresponding unconditional entropy measures by dropping subscripts t on
the expectation operators.

Each of these can be interpreted as a measure of variability, as they each take the form
Et f(X)−f(EtX) for appropriately chosen convex functions f : the first entropy measure sets
f(x) = x log x and the second sets f(x) = − log x. Like variance—which sets f(x) = x2—
they are strictly positive (unless X is constant, in which case they are zero).

The first entropy measure was proposed by Stutzer (1995) as a measure of SDF variability.
The second entropy measure was used by Alvarez and Jermann (2005); it satisfies the Bansal
and Lehmann (1997) bound

L
(2)
t (Mt+1Rf,t+1) ≥ sup

Rt+1

Et log
Rt+1

Rf,t+1

. (39)

Our next result provides a new bound for the first entropy measure and generalizes the
bound (39) on the second entropy measure.

Result 3. The entropy measures have geometrical interpretations: L(1)
t (Mt+1Rf,t+1) is the

slope of κt(θ, 0) at θ = 1, and L(2)
t (Mt+1Rf,t+1) is the absolute value of the slope at θ = 0.

L
(1)
t (Mt+1Rf,t+1) satisfies

L
(1)
t (Mt+1Rf,t+1) ≥ sup

Rt+1

sup
y∈R

y E∗t log
Rt+1

Rf,t+1

− logEt
[(

Rt+1

Rf,t+1

)y]
. (40)

L
(2)
t (Mt+1Rf,t+1) satisfies

L
(2)
t (Mt+1Rf,t+1) ≥ sup

Rt+1

sup
y∈R

y Et log
Rt+1

Rf,t+1

− logE∗t
[(

Rt+1

Rf,t+1

)y]
. (41)

The same bounds hold unconditionally (that is, dropping subscripts t).
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Proof. The interpretation of the first (resp., second) entropy measures in terms of the slope
of the CGF follows directly, by differentiating κt(θ, 0) with respect to θ and setting θ equal
to one (resp., zero).

As the CGF is a differentiable convex function, we have

κt(α) ≥ κt(β) + {∇κt(β)}> · (α− β)

for all α and β. Applying this property with α = (0, y) and β = (1, 0), we find κt(0, y) ≥
y κ

(2)
t (1, 0)− κ

(1)
t (1, 0), or equivalently,

κ
(1)
t (1, 0) ≥ y κ

(2)
t (1, 0)− κt(0, y), (42)

where
κ

(1)
t (1, 0) =

∂ κt
∂θ1

(1, 0) = Et [(Mt+1Rf,t+1) log (Mt+1Rf,t+1)]

and
κ

(2)
t (1, 0) =

∂ κt
∂θ2

(1, 0) = Et [(Mt+1Rf,t+1) log (Rt+1/Rf,t+1)] .

Rewriting the second of these in terms of risk-neutral expectations, we have

Et [Mt+1Rf,t+1 log (Mt+1Rf,t+1)] ≥ y E∗t log
Rt+1

Rf,t+1

− logEt
[(

Rt+1

Rf,t+1

)y]
.

As y is arbitrary, inequality (40) follows.
Applying the same convexity property with α = (1, y) and β = (0, 0), and then rear-

ranging, we have
− κ

(1)
t (0, 0) ≥ y κ

(2)
t (0, 0)− κt(1, y) , (43)

where
κ

(1)
t (0, 0) =

∂ κt
∂θ1

(0, 0) = Et log (Mt+1Rf,t+1) ,

κ
(2)
t (0, 0) =

∂ κt
∂θ2

(0, 0) = Et log (Rt+1/Rf,t+1) .

This can be rewritten as

−Et log (Mt+1Rf,t+1) ≥ y Et log
Rt+1

Rf,t+1

− logE∗t
[(

Rt+1

Rf,t+1

)y]
.

As y is arbitrary, inequality (41) follows.
The unconditional version of the result has the same proof in each case, after dropping

subscripts t.
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The bounds in Result 3 are well-behaved, as they each feature suprema over the difference
between a linear function of y and a convex function of y. From an empirical perspective,
this means that the lower bounds we estimate using realized returns and option price data
behave stably across data sources and sampling horizons.

The lower bound (41) is dual to the lower bound (40) in that the roles of the true and
risk-neutral distributions are interchanged on the right-hand sides. If we set y = 1 on the
right-hand side of (41), the dependence on the risk-neutral distribution disappears, because
E∗t Rt+1/Rf,t+1 = 1, and we recover the Bansal and Lehmann (1997) bound (39).

By contrast, the bound (40) on the first entropy measure does not relate to any known
bound in the literature. The only way to avoid using information in the risk-neutral distri-
bution of Rt+1, when implementing it, is to set y = 0 on the right-hand side. But in this case
the bound reduces to the vacuous statement L(1)

t (Mt+1Rf,t+1) ≥ 0. So an essential feature
of the bound (40) is that it plays off the true and risk-neutral distributions of Rt+1 against
one another: the bound is non-trivial only when it exploits both the true and risk-neutral
distributions of Rt+1. This may explain why it has not been discovered in the prior literature,
which has focused only on the true distributions of returns.

The difference between the two entropy measures can be expressed17 in terms of the
higher cumulants of the log SDF: writing κn for the nth cumulant of log(Mt+1Rf,t+1),

L(1)(Mt+1Rf,t+1)− L(2)(Mt+1Rf,t+1) =
∞∑
n=3

n− 2

n!
κn =

κ3
6

+
κ4
12

+
κ5
40

+
κ6
180

+ · · · . (44)

Hence the gap between the first and second measure is large if the log SDF is right-skewed,
has excess kurtosis, and so on. Conversely, if the SDF is lognormal then the higher cumulants
of its logarithm are all equal to zero, κn = 0 for n > 2: in this case, the two entropy measures
are equal to each other (and they each equal 1

2
var log(Mt+1Rf,t+1)).

Of the well-behaved bounds studied in this paper—that is, the moment bounds for θ ∈
(0, 1), and the two entropy bounds—the bound (40) on the first entropy measure is the most
sensitive to the right tail of the SDF distribution, and hence, in equilibrium models, to states
in which marginal utility is high. The first entropy measure summarizes the rate at which
the SDF moments rise as θ passes through 1, and it is well-behaved even though the SDF
moments strictly above 1 are not.

17To see this, note that κ(θ, 0) =
∑∞
n=1 κn

θn

n! . By Result 3, the first and second entropy measures represent
the absolute value of the slope of this function at θ = 1 and θ = 0, respectively, so L(1)(Mt+1Rf,t+1) =∑∞
n=1

κn

(n−1)! and L
(2)(Mt+1Rf,t+1) = −κ1. Moreover, the fact that E(Mt+1Rf,t+1) = 1 implies that κ(1, 0) =

0, so κ1 = −∑∞n=2
κn

n! . Putting these facts together, equation (44) follows.
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2.2.1 Measuring risk aversion

A classical result of Merton (1969) and Samuelson (1969) shows that if an investor with
constant relative risk aversion, γ, chooses to invest fully in an asset whose returns are iid
lognormal, then γ can be inferred from the ratio of the asset’s risk premium to its return
variance. The next result (which we implement empirically in Table 4 below) shows that the
optimizing values of y in Result 3 reveal γ in a more general setting.

Result 4 (Merton–Samuelson Redux). If a myopic investor with constant relative risk aver-
sion, γ, chooses to invest fully in the asset with return Rt+1, then the optimizing values of y
in inequalities (40) and (41) for the SDF entropy measures are −γ and γ, respectively.

Result 4 replaces the iid lognormal assumption of Merton and Samuelson with the strictly
weaker assumption18 that the investor behaves myopically, so that the SDF is proportional to
R−γt+1. It is easy to check that Result 4 recovers the Merton–Samuelson result in the lognormal
special case: with a lognormal CGF, as in equation (14), it implies that risk aversion satisfies
γ = µ/σ2, where µ is the risk premium and σ2 is return variance.19

2.3 An economic interpretation of the bounds

The variance of the SDF has the appealing property that it can be related to measures of
the attractiveness of investment opportunities without any assumptions on the underlying
stochastic processes, if one is prepared to adopt the perspective of a one-period investor
with quadratic utility so that the Sharpe ratio can be taken as an index of investment
opportunities. Specifically, the Hansen–Jagannathan bound states that the volatility of
Mt+1Rf,t+1 must exceed the maximum attainable Sharpe ratio. In a similar vein, the Bansal–
Lehmann bound relates the (second) entropy measure of the SDF to the maximum attainable
expected log return, which measures the attractiveness of investment opportunities from the
perspective of an investor with log utility.

We now show that similar properties hold for the intermediate moments E
[
(Mt+1Rf,t+1)

θ
]
,

where θ ∈ (0, 1).
Our analysis adopts the perspective of a one-period investor with constant relative risk

aversion equal to γ (of which log utility is a special case). The attractiveness of investment

18Merton and Samuelson show that a CRRA investor behaves myopically if returns are iid.
19Under lognormality, return variance is identical under both the true and risk-neutral distributions.

Our approach allows true variance and risk-neutral variance to differ, as documented by a large empirical
literature on the variance risk premium.
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opportunities can be then quantified using the willingness-to-pay (WTP) to trade.20 This is
the proportional fraction of wealth, gγ, that the investor would be prepared to pay in order
to be allowed to trade risky assets (as opposed to being allowed to trade only the riskless
asset). This satisfies

1

1− γ E
([
e−gγWt

]1−γ
R1−γ
γ,t+1

)
=

1

1− γ E
(
W 1−γ
t R1−γ

f,t+1

)
, (45)

where we write Rγ,t+1 for the return on the investor’s optimal strategy. It follows that

gγ =
1

1− γ logE

[(
Rγ,t+1

Rf,t+1

)1−γ
]
. (46)

This equation motivates an asset-level performance measure,21

φ(Rt+1) =
1

1− γ logE

[(
Rt+1

Rf,t+1

)1−γ
]
. (47)

If offered a choice between a collection of different investment opportunities with returns
{Ri,t+1}i=1,...,N , a myopic power utility investor would choose the opportunity with highest
φ(Ri,t+1). (In the log utility case, i.e., the limit as γ → 1, φ(Ri,t+1) equals E logRi,t+1 −
logRf,t+1: the investor chooses the opportunity with the highest expected log return.)

The next result shows that our bounds translate into bounds on gγ. To state the result
concisely, we write B(θ) for the bound on the right-hand side of inequalities (26) and (27)
in Result 1 (as illustrated in Figures 4 and 6), written as a function of θ. That is,

B(θ) = inf
y∈R

θκ(1, y) + (1− θ)κ
(
0,

θ

θ − 1
y

)
when θ ∈ (0, 1).

When θ 6∈ (0, 1), we define B(θ) similarly, but with a supremum over y ∈ R.

Result 5 (The relationship between SDF moments and WTP). The lower bounds are in-
formative about the attractiveness of the investment opportunity set:

gγ ≥
∣∣∣∣B(1− 1/γ)

1− 1/γ

∣∣∣∣ for γ > 0, γ 6= 1. (48)

20Černý (2003) points out the unattractiveness of the Sharpe ratio as a performance measure and proposes
a related approach based on generalised Sharpe ratios, which are defined in such a way that they reduce
to the true Sharpe ratio as the Sharpe ratio tends to zero. Our WTP measure is a monotonic function of
Černý’s generalised Sharpe ratio in the CRRA case.

21This performance measure is intentionally easy to calculate. Real-world investors have long horizons,
background risk, and so on, but we choose not to incorporate such considerations into the performance
measure as the details of horizon length and background risk vary from person to person.
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The right-hand side of this inequality is the absolute value of the slope of the line that joins
the origin to B(θ) at the value θ = 1− 1/γ.

In the log utility case, we have g1 ≥ |B′(0)|. The right-hand side of this inequality is the
absolute value of the tangent to B(θ) at θ = 0.

Writing τ = 1/γ, we can define WTP as a function of risk tolerance as opposed to risk
aversion, g(τ) = g1/τ . Then we have g′(0) = L(1) (Mt+1Rf,t+1), so that the first entropy
measure22 reveals the marginal increase in WTP when someone with zero risk tolerance
becomes slightly risk tolerant.

We use this result below to translate our moment bounds into more easily interpretable
WTP numbers.

3 From theory to data

In our empirical work, we apply our bounds to the return on the S&P 500 index. For the
rest of the paper, we use Rt+1 to denote this return.

As noted above, we work unconditionally throughout our empirical work, in order to avoid
restrictive assumptions about which state variables are relevant for calculating conditional
moments. We estimate the unconditional CGF (11) via a time-series average over a long
sample of realized returns,

κ̂(0, θ) = log
1

T

T−1∑
t=0

(Rt+1/Rf,t+1)
θ . (49)

Similarly, we replace E with 1/T
∑T

t=1 in (13) to give our empirical implementation of the
unconditional risk-neutral CGF,

κ̂(1, θ) = log
1

T

T∑
t=1

E∗t
[
(Rt+1/Rf,t+1)

θ
]
= log

1

T

T∑
t=1

exp (κt(1, θ)) , (50)

where the term inside the sum can be computed from option prices on any given date, as
shown in equation (5).

The quantities on the right-hand sides of equations (49) and (50) are CGFs calculated
with respect to particular measures—the empirical measure in the case of (49) and a time
average of conditional risk-neutral measures in the case of (50)—so they have the usual
properties of CGFs: they are convex and they pass through the origin.

22Stutzer (1995) offers a similar gain-from-trade interpretation for this entropy measure from the perspec-
tive of an investor with constant absolute risk aversion.
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Figure 3: The CGFs observable from realized S&P 500 returns and SPX index option prices.
Two observable slices of the CGF surface in the data. The solid green line is the unconditional true CGF

calculated using realized one-month returns on the S&P 500 index from 1872 to 2022. Thin red lines indicate

conditional risk-neutral CGFs for one-month S&P 500 index returns on 100 randomly selected trading days

drawn from the 1996–2022 sample, calculated as in (5); the solid red line is the unconditional risk-neutral

CGF κ(1, θ), calculated according to (50).

Figure 3 illustrates these quantities in our dataset using S&P 500 index returns from
1872 to 2022 and option price data from 1996 to 2022. (A detailed description of our data
is deferred to Section 3.3.)

3.1 Conservative measurement of risk-neutral quantities

Our results exploit the fact that risk-neutral expectations of powers of returns are observable
via option prices, as shown in equation (5). It is conventional in the literature to treat mid-
market prices as exact measures of risk-neutral quantities. In reality, the existence of a
bid-offer spread means that we only observe a region in which the risk-neutral quantity
lies. To be conservative, we use bid and offer prices throughout our empirical work. If we
used mid-market prices, our results would become more extreme: the lower bounds would
increase, the upper bounds would decrease, and the singularity would move closer to one.

More specifically, we use whichever of bid or offer prices gives the conservative choice
in any given situation. Suppose, for example, we are interested in the θth moment of the
SDF for some θ > 1. In this case, the right-hand side of inequality (26) in Result 1 repre-
sents a lower bound on the θth moment, and the conservative choice is therefore to make
E∗t [(Rt+1/Rf,t+1)

y]—equivalently, κt(1, y)—small. Recalling equation (5) and the subsequent
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discussion, this is achieved by using the offer prices of options if the optimizing value of y is
between zero and one, and bid prices of options if it is less than zero or greater than one.

If we are interested in measuring the θth moment of the SDF for some θ < 0, there is
a sign flip: the right-hand side of inequality (26) continues to represent a lower bound, but
because θ is now negative, the conservative choice is to make κt(1, y) large. We therefore
use bid prices when y is between zero and one, and offer prices when y is less than zero or
greater than one.

There is a sign flip of a different form when θ ∈ (0, 1): we now use inequality (27), which
supplies an upper bound on the θth SDF moment. With θ positive, the conservative choice
is to make κt(1, y) large. As in the previous paragraph—but for a different reason—we
therefore use bid prices when y is between zero and one, and offer prices when y is less than
zero or greater than one.

3.2 Finite sample considerations

In the data, it often happens that options with strikes so far out of the money that the
corresponding return has never been realized in sample have positive bid prices. The worst
monthly return in the sample, of −29%, occurred in September 1931; and put options with
strikes more than 29% out of the money have positive bid prices on 73% of days in our sample
(or 16% of days after we apply our filters).23 These options are so far out of the money that
they would never have paid off in the sample period, so that selling them at a positive price
looks like an arbitrage opportunity to a naive econometrician. Our version of the data-mining
problem, then, is that by shorting sufficiently far out-of-the-money options we can construct
strategies with superficially very attractive in-sample risk-reward characteristics.

Recall that when θ < 0 or θ > 1, the bound of Result 1 is equivalent to the inequality
(30). We implement this bound (in its unconditional form) in the conventional way, replacing
expectations with time-series averages, so that the estimated lower bound on the θth moment
of the SDF is

κ(θ, 0) ≥ sup
y

θ κ̂(1, y) + (1− θ) κ̂
(
0,

θ

θ − 1
y

)
(51)

where κ̂(0, ·) and κ̂(1, ·) are the empirical estimates of the true and risk-neutral CGFs, as
defined in equations (49) and (50).

23The most extreme example is that we observe a put option with strike K/S0 = 0.33 and a positive bid
price on March 19, 2020. This option would only pay out if the market dropped by more than 67% over a
month.
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Result 6. Fix θ > 1. Suppose that one (or both) of the following conditions hold: (i)
The most extreme put strike (of a put with positive bid price) in the dataset is lower than
the lowest observed return in sample, mintKmin,t/Rf,t+1 < mintRt+1/Rf,t+1; (ii) The most
extreme call strike (of a call with positive bid price) in the dataset is higher than the highest
observed return in sample, maxtKmax,t/Rf,t+1 > maxtRt+1/Rf,t+1. Then the lower bound in
equation (51) can be made arbitrarily large.

We have already seen examples of models that feature divergent SDF moments, and we
have shown that the bounds in Result 1 need not be well-behaved for θth moments if θ > 1

or θ < 0. Result 6 sharpens the issue: it shows (under conditions that hold in the data) that
if θ > 1 the empirical lower bound on the θth moment of the SDF will always diverge in a
finite sample.

The only truly robust response—and our preferred response—to this issue is to restrict
attention to θth moment bounds with θ ∈ (0, 1) and to entropy bounds. These are well-
behaved, as we showed in Section 2, and below we will see that these bounds have a natural
economic interpretation.

The prior literature has focussed attention outside this range, however. To connect to this
literature by allowing θ 6∈ (0, 1), one can take a more pragmatic approach by constraining
the range of risk-neutral moments that are exploited in the bounds of Result 1: that is, by
constraining y to lie in some range [−B,B] where B > 0 is a fixed parameter. This avoids
the problems associated with apparent in-sample arbitrage opportunities, but it creates the
new problem that B is arbitrary.

For bounds on the lower moments of the SDF—when θ is greater than, but sufficiently
close to, 1, or when θ is negative—we find, however, that there is an interior optimum which
remains constant as we change B within some range. This implies that the data-implied
bound is independent of B within this range, as we would wish (and in practice we find,
encouragingly, that the interior optima y∗(θ) that arise in our empirical study tend to be
small in magnitude).

In contrast, when we seek bounds on higher moments of the SDF—for values of θ above,
say, two—we find that the optimizing value of y is always a corner solution: for any given B,
the optimizing value of y equals −B or B. In the case θ = 2, for example, this is analogous
to finding that deeper and deeper out-of-the-money options have higher and higher Sharpe
ratios.

In short, we can distinguish three different ranges of values of θ. When θ ∈ (0, 1), there
is always an interior optimum, so that the lower bound is guaranteed to be finite both in
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population and in finite samples. Using a traffic light coloring scheme, we can think of this
as the green range, and we indicate it as such in our figures. Only this range is truly robust
in general. There is also a yellow range in which θ 6∈ (0, 1) but there are interior optima in y.
Finally, the red range encompasses the remaining values of θ 6∈ (0, 1) for which there are no
interior optima, so that the bounds diverge monotonically to infinity. While the boundaries
between the green and yellow ranges always occur at θ = 0 and θ = 1, the locations of the
boundaries between yellow and red are an empirical question. We refer to the boundary
value of θ > 0 that divides the yellow and red ranges as the singularity.

3.3 Data

3.3.1 Equity market returns

Our monthly stock market return data is drawn from three sources: the US stock returns
compiled by (Schwert, 1990, https://www.billschwert.com/gws_data.htm), the S&P 500
index from the Global Financial Data (GFD), and the Center for Research in Security
Prices (CRSP). As the return time-series before 1872 are aggregated from a handful of bank
and railroad stocks, we focus on the post-1872 sample. We download annual US stock
market return data from the Macrohistory database introduced in Jordà, Knoll, Kuvshinov,
Schularick, and Taylor (2019, JKKST) covering 1872 through 2020. Lastly, we use daily
return data to construct realized monthly returns—and returns over other horizons when
needed—in some of our analysis for robustness. The daily data is consolidated from Schwert
(1990) and CRSP, covering February 17, 1885 through December 30, 2022.

3.3.2 Riskless rates

We also combine multiple data sources for the riskless rate observations. Before 1926, we use
the US long-term bond yield data from the GFD, assuming a flat term structure. Between
January 1926 and May 1961, we combine the monthly Fama–Bliss discount bond prices and
the risk-free rate series from the CRSP US treasury database. Missing rates at specific
maturities are interpolated linearly from the observed data. After June 1961, we use the
yield curve data constructed and maintained by Liu and Wu (2021), which is available at
daily frequency.
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3.3.3 Option prices

We collect daily Cboe SPX index option prices from OptionMetrics, from January 4, 1996
to December 30, 2022. After March 6, 2008, OptionMetrics reports closing bid and offer
prices at 3:59pm Eastern Time, synchronized with the equity market. Before that date,
OptionMetrics reports the last quotes of the trading day, at 4pm for the equity market
and 4:15pm for the index option market. In a robustness check in Section 4.1, we confirm
that our results are almost identical if we restrict the option sample to the period following
March 6, 2008.

We apply various filters to the options sample. We exclude contracts that expire within
the next week. For each maturity-date combination, we require an available risk-free rate.
Each option record must satisfy several conditions to remain in our sample: the implied
volatility must be available; the best offer price must exceed the best bid price; the best bid
price must be positive; and the contract must have positive open interest and must have
been traded on the current day. When multiple puts (or calls) share the same strike price
and maturity on a given date, we keep the observation with the highest trading volume.
Table A1 summarizes the effect of imposing these filters on the size of the sample.

On each day in sample, we first linearly interpolate option prices between quoted strikes.
We consider several different approaches to extrapolating outside the range of quoted strikes.
They all give broadly similar results and, in particular, the finding that SDF moments
explode rapidly when θ > 1 emerges in every specification. In this range, the critical inputs
to the bounds are the bid prices of options: the single most important empirical fact for us
is that these are surprisingly high.

It is therefore particularly important to make conservative choices when extrapolating
bid prices.24 We exploit a classical argument based on the absence of so-called butterfly
arbitrage trades, taking account of the cost of “crossing the spread”. This argument allows
us to extrapolate bid prices linearly outside the quoted range of strikes, using the bid price
of the deepest out-of-the-money option and the offer price of the next deepest out-of-the-
money option. This procedure applies for puts and for calls, and it relies only on the absence
of static arbitrage opportunities.

Offer prices are less important for our key findings. In our baseline analysis, we ex-
trapolate offer prices outside the range of strikes by linearly extrapolating the associated
Black–Scholes (offer) implied volatilities, terminating once the corresponding option prices

24Figure A5, in the Appendix, shows that our results are broadly unchanged if we do not extrapolate at
all, setting prices to zero outside the range of traded quotes.
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fall below one cent.25 In a robustness exercise in Section 4.1, we entertain the possibility
that offer prices behave as badly as possible, subject to the absence of arbitrage. This has
a modest effect on the moment bounds for values of θ less than about 0.5, but almost no
effect above this range.

SPX options are available only on certain expiration dates, so we use time-weighted
interpolation to create risk-neutral CGFs at fixed maturities (such as one month or one
year). This is the approach used by Cboe to construct the VIX index. Table A2 explains
the procedure in detail and reports the resulting sample sizes, for both daily and monthly
observations, of the conditional risk-neutral CGFs.

4 Empirical results

Figure 4 plots the bounds on moments of the SDF for θ between −3 and 3 at the one-month
horizon; we annualize the monthly bounds by multiplying by 12. Figure A2, in the appendix,
reports similar results at the one-year horizon. The left panel shows results based on the full
realized return sample (1872–2022). The right panel presents results using realized returns
for the postwar period (1946–2022). In both panels, our sample of option prices (expiring in
one month, and observed at month end) runs from 1996 to 2022.

The bounds are highly asymmetric, growing far more rapidly for positive than for nega-
tive θ. For comparison, recall that in the lognormal case (14) the SDF, κ(θ, 0) = 1

2
λ2θ(θ−1),

is quadratic and symmetric around θ = 1/2. In particular, the bounds diverge for values of θ
below two, both in our long sample and in the post-war sample; as discussed in Section 3.2,
we refer to the point of divergence as the singularity. The singularity is closer to one in the
post-war sample, reflecting the fact that the post-war sample contains fewer very extreme
market declines of the type that occurred during the Great Depression years.26

Recall that we use option bid and offer prices to calculate our bounds, and we extrapolate
conservatively outside the range of traded strikes. Figure A3 shows that our results would
appear more dramatic—the upper bounds would be lower and the lower bounds would be
higher—if we used mid-market prices, extrapolated assuming a flat volatility smile.

25To be conservative, we impose a constraint that the slope of the linearly extrapolated implied volatilities
should be at most zero for puts, and at least zero for calls.

26If, hypothetically, we were able to observe a long sample of option prices, including data from the Great
Depression, it is likely that our results would become more dramatic, because measures of implied volatility
would plausibly have been even higher during that period than is suggested by the unconditional mean of
our more recent sample.
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Figure 4: Convexity bounds for the moments of the SDF. Shading along the axis indicates
the green, yellow and red regions as discussed in Section 3.2.
Applying Result 1 to the S&P 500 index. The blue curves are lower bounds on SDF moments when θ < 0

or θ > 1 and upper bounds when θ ∈ (0, 1).
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Figure 5: Optimizing values for the convexity bounds.
Applying Result 1 to the S&P 500 index. The blue curves show the values of y where (interior) optima are

achieved, for different values of θ. Regions colored in light blue (red) are combinations of (θ, y) values such

that we will use the bid (offer) option prices to construct the risk-neutral curves for evaluating our bounds,

as discussed in Section 3.1.
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Table 1: The locations of the singularity in κ(θ, 0) = logE[(Mt+1Rf,t+1)
θ]

This table reports the location of the singularity in (the bounds on) logE[(Mt+1Rf,t+1)θ]. The estimation
uses monthly US stock-market returns and month-end SPX option prices. The row “JKKST annual” in Panel
(b) uses the annual realized return series from 1872–2020 in Jordà et al. (2019). The options data cover
1996 through 2022 for all specifications. Column 3 reports 95% confidence intervals using a block bootstrap
with block length equal to the return horizon, resampling both series separately. Column 4 (E-bootstrap)
resamples only the realized returns used for estimating κ̂(0, θ) in equation (49). Column 5 (E∗-bootstrap)
resamples only the risk-neutral conditional CGFs used for estimating κ̂(1, θ) in equation (50).

sample est. bootstrap CI E-bootstrap CI E∗-bootstrap CI

(a) one-month horizon

1872-2022 1.72 (1.52, 2.05) (1.50, 1.97) (1.62, 1.87)

1946-2022 1.38 (1.20, 1.60) (1.20, 1.56) (1.34, 1.45)

1996-2022 1.44 (1.23, 1.78) (1.23, 1.77) (1.39, 1.52)

(b) one-year horizon

1872-2022 1.67 (1.27, 2.50) (1.27, 2.05) (1.60, 2.10)

1946-2022 1.28 (1.15, 1.50) (1.14, 1.42) (1.23, 1.38)

1996-2022 1.36 (1.14, 1.92) (1.13, 1.73) (1.32, 1.52)

JKKST annual 1.36 (1.23, 1.56) (1.21, 1.52) (1.32, 1.51)

Figure 5 plots, as a function of θ, the optimizing value of y that produces the convexity
bounds shown in Figure 4. The same red, amber, and green regions are also shaded over the
x-axis. In the data, y∗(θ) decreases monotonically with θ. It is positive for all θ < 1 but
plunges from zero to negative infinity—eliminating any interior maximum—as θ increases
from one toward the singularity. As noted earlier, this phenomenon can emerge in a variety
of equilibrium models with parameter learning and heterogeneous beliefs (for example, in
equation (38) we have y∗(2) = −∞).

Light blue (resp. light red) shading in Figure 5 indicates regions in which we use bid
(resp. offer) option prices to estimate the risk-neutral CGFs. We use bid and offer prices
appropriately, for given values of θ and y, to ensure that our bounds are conservative, as
described in Section 3.1. In practice, as the figure shows, our procedure switches from using
offer prices when θ is below about 0.5 to using bid prices above this value.

Table 1 reports estimates of the location of the singularity using one-month (Panel a) and
one-year (Panel b) returns in both the full and post-war samples. To address the concern
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that the recent time period (when we observe option prices) is somehow different from the
earlier sample period, we also report results using the time series of returns from 1996 to 2022
only. All these realized returns are based on our monthly data series. The point estimate
of the location of the singularity is similar to that of the post-war sample, though with a
somewhat wider confidence interval at both one-month and one-year horizons.

As a further validation, we also consider the annual one-year return series of Jordà et al.
(2019), which covers the period from 1872 to 2020 (JKKST annual). This exercise leaves
the point estimate virtually unchanged. The confidence interval narrows, despite the smaller
sample size, because the positions of the singularity are heavily influenced by extreme ob-
servations. Specifically, the JKKST data exclude severe mid-year crashes such as the −65%
drop from June 1931 to June 1932: the worst return realization in their series is around
−40% for the year 1931.

Table 1 also demonstrates that the sampling uncertainty is much larger for the physical
distribution than for the risk-neutral one. Column 4 bootstraps realized returns, while
holding the risk-neutral CGF fixed, and Column 5 bootstraps the time series of option
prices, holding the true CGF fixed. Even with the longest return sample, the confidence
intervals based on resampling returns (Column 4) are almost twice as wide as the intervals
based on resampling the options (Column 5). Across all specifications, bootstrapping returns
alone produces nearly the same intervals as bootstrapping both data sources, indicating that
most of the sampling uncertainty is associated with the time series of realized returns.

The left panels of Figure 6 show zoomed-in versions of the two panels of Figure 4, fo-
cussing on the well-behaved range θ ∈ (0, 1). As moments in this range are unfamiliar, the
right panels of the figure convert the moment bounds into bounds on the attractiveness of
investment opportunities, as discussed in Section 2.3.

Table A4, in the appendix, reports the values of the bounds at θ = 1/2 together with con-
fidence intervals. The estimates are stable across subsamples, and once again the confidence
intervals reveal that the majority of the statistical uncertainty is attributed to uncertainty
about the true CGF, not the risk-neutral CGF. Larger return sample sizes consistently
tighten the intervals by increasing efficiency, in contrast to the singularity results in Table 1,
where extreme observations play a more crucial role and additional data does not always
narrow the confidence intervals.

Tables 2 and 3 report results for the two SDF entropy measures introduced in Result 3.
As predicted, these bounds are stable across subsamples, and most of the uncertainty stems
from the noise in realized returns. The Alvarez–Jermann (A–J) measure is a special case of
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(a) Realized return sample: 1872–2022
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(b) Realized return sample: 1946–2022
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Figure 6: Convexity bounds for θ ∈ (0, 1) (left). The attractiveness of investment oppor-
tunities, from the perspective of an investor with relative risk aversion γ (right). Dark and
light gray shaded areas indicate point-wise 68% and 95% confidence intervals.

our second entropy bound when the right-hand side of (41) is evaluated at y = 1 rather than
optimized. At the one-month and one-year horizons, our new bounds improve on the A–J
measure by at least 15% (30%) in the full (post-war) sample, though these improvements
are not always statistically significant.27

Table 4 uses Result 4 to calculate measures of risk aversion implied by the optimizing
values of y in the entropy bounds of Result 3. The risk aversion estimates are similar, and
statistically indistinguishable from each other, across return horizons and for both entropy
measures, taking values between 1.6 and 2.4.

27Figure A4, in the appendix, shows that these results are extremely stable across a wider range of
horizons between 1 and 12 months.
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Table 2: Lower bounds for the first entropy metric

This table reports the lower bounds for the first entropy measure of the SDF

L(1)(MRf ) ≡ E[(MRf ) log(MRf )] = E∗[log(MRf )]

according to (40) in Result 3, and estimated with monthly US stock-market returns in various samples and
month-end SPX option prices which always cover 1996 through 2022. The one-month estimates in Panel (a)
are annualized by multiplying by twelve. Panel (b) of each table adds an extra row, “JKKST annual,” which
swaps in the annual return series from 1872–2020 in Jordà et al. (2019) while keeping the same option sample.
For all estimates in Column 2, we report 95% confidence intervals using block bootstrap, the block length
of which matches each return horizon. Column 3 resamples realized returns and the risk-neutral conditional
CGFs. Column 4 (E-bootstrap) resamples only the realized returns. Column 5 (E∗-bootstrap) resamples
only the risk-neutral conditional CGFs.

sample est. bootstrap CI E-bootstrap CI E∗-bootstrap CI

(a) one-month horizon

1872-2022 0.088 (0.033, 0.175) (0.033, 0.177) (0.084, 0.093)

1946-2022 0.173 (0.070, 0.344) (0.071, 0.348) (0.165, 0.182)

1996-2022 0.157 (0.016, 0.445) (0.016, 0.439) (0.149, 0.165)

(b) one-year horizon

1872-2022 0.070 (0.026, 0.151) (0.027, 0.150) (0.062, 0.079)

1946-2022 0.143 (0.060, 0.301) (0.058, 0.313) (0.129, 0.158)

1996-2022 0.122 (0.013, 0.476) (0.013, 0.478) (0.110, 0.133)

JKKST annual 0.078 (0.028, 0.178) (0.028, 0.179) (0.068, 0.088)

4.1 Robustness

The extreme asymmetry of our SDF moment bounds—and the presence of a singularity—
emerges robustly across a range of alternative specifications that we now describe.

Appendix Figure A5 shows that the moment bounds are almost unchanged if we do not
extrapolate outside the observed option contracts at all when implementing equation (5).

To capture more extreme return realizations,28 we have also explored also using daily re-
turn data to construct realized monthly returns. Appendix Figure A6 shows that our moment
bounds are broadly the same in daily data. For this exercise, we construct rolling one-month

28For instance, the worst calendar-month loss was −29% from the close on August 31 to the close on
September 30, 1931. Daily return data reveal a larger drop of −31% from February 20 to March 20, 2020,
during the COVID-19 crash. The worst one-month decline is −37% from October 14 to November 14, 1929.
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Table 3: Lower bounds for the second entropy metric

This table reports the lower bounds for the second entropy measure of the SDF

L(2)(MRf ) = −E[log(MRf )]

according to inequality (41) in Result 3, and estimated with monthly US stock-market returns in various
samples and month-end SPX option prices which always cover 1996 through 2022. The one-month estimates
in Panel (a) are annualized by multiplying by twelve. Panel (b) of each table adds an extra row, “JKKST
annual,” which swaps in the annual return series from 1872–2020 in Jordà et al. (2019) while keeping the
same option sample. Columns 2 and 3 report the original Alvarez–Jermann measures, which is a special case
of our bounds by fixing y = 1 in (41). For all estimates of our bounds in Column 4, we report 95% confidence
intervals using block bootstrap, the block length of which matches each return horizon. Column 5 resamples
realized returns and the risk-neutral conditional CGFs. Column 6 (E-bootstrap) resamples only the realized
returns. Column 7 (E∗-bootstrap) resamples only the risk-neutral conditional CGFs.

A–J measure (y = 1)
sample est. bootstrap CI est. bootstrap CI E-bootstrap CI E∗-bootstrap CI

(a) one-month horizon

1872-2022 0.052 (0.023, 0.080) 0.062 (0.023, 0.122) (0.023, 0.120) (0.060, 0.065)

1946-2022 0.066 (0.036, 0.100) 0.089 (0.038, 0.174) (0.038, 0.174) (0.084, 0.094)

1996-2022 0.067 (0.006, 0.125) 0.091 (0.009, 0.262) (0.009, 0.258) (0.087, 0.097)

(b) one-year horizon

1872-2022 0.049 (0.023, 0.072) 0.057 (0.023, 0.108) (0.023, 0.105) (0.053, 0.063)

1946-2022 0.063 (0.034, 0.093) 0.084 (0.035, 0.173) (0.035, 0.164) (0.076, 0.096)

1996-2022 0.067 (0.007, 0.118) 0.091 (0.010, 0.273) (0.010, 0.265) (0.083, 0.104)

JKKST annual 0.045 (0.018, 0.076) 0.050 (0.018, 0.117) (0.018, 0.114) (0.048, 0.055)

returns from daily returns (thereby including more extreme index return realizations), and
we include daily index option data.29

Appendix Figure A7 shows that the imperfect synchronization between SPX option clos-
ing quotes and the closing index level before March 6, 2008 does not affect our results:
we find almost identical results when we only consider observations after this date, so that
option and index closes are synchronized within one minute.

29We do not use daily data in our baseline specification because we would need a block length of at least
250 days to calculate bootstrapped confidence intervals for our one-year analysis. A standard rule of thumb
is that the block length should be of order T 1/3, where T is the sample length. We would therefore need on
the order of 2503 days of data; we only have 150 years, i.e. roughly 150× 250 days.
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Table 4: Implied risk aversion

This table reports risk-aversion parameters calculated using Result 4. Estimates are based on monthly US
stock-market returns (1872–2022) and month-end SPX option prices (1996–2022). 95% confidence intervals
are constructed using block bootstrap, with the block length equaling each return horizon. We resample
both the realized returns and the conditional risk-neutral CGFs.

first entropy measure L(1) second entropy measure L(2)

horizon estimate bootstrap CI estimate bootstrap CI

1 2.36 (1.42, 3.38) 1.69 (1.00, 2.48)
2 2.21 (1.41, 3.11) 1.67 (1.05, 2.40)
3 2.14 (1.38, 3.08) 1.65 (1.02, 2.36)
4 2.17 (1.43, 3.10) 1.63 (1.09, 2.27)
5 2.15 (1.40, 3.14) 1.62 (1.03, 2.35)
6 2.07 (1.34, 3.12) 1.63 (1.03, 2.39)
9 1.84 (1.06, 2.95) 1.66 (1.00, 2.50)
12 1.74 (0.96, 2.99) 1.66 (0.99, 2.65)

Appendix Figure A8 shows our results are little changed when we implement the conser-
vative approach to extrapolating option offer prices described in Figure A1. This procedure
accommodates the possibility that (offered) risk-neutral moments may be infinite when θ < 0

or θ > 1, as suggested by Bondarenko, Dillschneider, Schneider, and Trojani (2025). This
has a modest effect on the moment bounds for values of θ less than about 0.5, but almost
no effect above this range, because the offer prices becomes irrelevant for reasons described
in Section 3.1.

Appendix Figure A9 shows that our results are almost unchanged if we drop the deepest
out-of-the-money options. Specifically, we define adjusted moneyness for each option contract
as

m =
log(K/F (τ))

σATM
√
τ

, (52)

where τ is the option’s maturity, K is the strike price of the options, F (τ) is the maturity-
matched forward price of the index, and σATM is the at-the-money implied volatility, mea-
sured at the strike equal to the forward price. We keep out-of-the-money put options for
which m is between −6 and 0 and out-of-the-money call options for which m is between
0 and 3. This choice is motivated by the fact that the average daily trading volumes (in
delta-adjusted dollars) of option contracts within these moneyness ranges are comparable to
those of stocks in the Fama-French size-sorted portfolios. (Figure A10 illustrates the time-
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series patterns of the dollar volumes and Table A3 reports summary statistics.) If a financial
economist is comfortable using the size-sorted portfolio returns in empirical tests, there is no
reason to disregard our option panel on the basis that the contracts are too thinly traded.

5 Conclusions

We have derived new bounds for moments of the stochastic discount factor that exploit a
comparison between the risk-neutral and true distribution of returns of a specific underlying
asset. The bounds can be applied to any risky asset return on which options are traded. We
apply them to the return on the S&P 500 index, and find that the θth moment of the SDF
rises extremely rapidly as θ rises above one and exhibits a singularity, diverging to infinity,
at around θ = 1.7 in our long dataset. In particular, our results undercut the assumption,
almost universal in financial economics, that the SDF has finite variance.

This fact conflicts with the intuition that returns with extremely high Sharpe ratios are
in some sense too good to be true (Cochrane and Saá-Requejo, 2000). That intuition is
justified if one adopts the perspective of a mean–variance investor who cares only about
means and volatilities of returns (and not about skewness or fat-tailedness, other than to the
extent that they are captured in volatility), but, as has been widely noted in the literature,
mean–variance preferences generate implausible patterns of investor behavior.

The intuition can be salvaged, however. Just as the maximal attainable Sharpe ratio
summarizes the attractiveness of investment opportunities from the point of view of a mean–
variance investor—and is related to SDF variance via the Hansen and Jagannathan (1991)
bound—our family of bounds can be related to measures of the attractiveness of investment
opportunities from the perspective of a myopic investor with constant relative risk aversion γ.
From such an investor’s point of view, the natural index of SDF variability is not its variance
but its (1 − 1/γ)th moment. In sharp contrast to variance bounds, these moment bounds
are well-behaved (and have plausible magnitudes empirically) when γ ≥ 1.

The single most important empirical fact underpinning our moment divergence finding
is that index options have high bid prices. Our results therefore relate to a prior literature
that has argued that options have low average realized returns. Average returns on options
are hard to measure, however, both because they are inherently skewed and fat-tailed and
because the observed time series is relatively short. Our approach avoids this issue—and
deviates from the prior literature—by exploiting the fact that option prices directly reveal
the risk-neutral distribution of the underlying asset. In fact, in our applications we find
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that there is more estimation uncertainty associated with estimating the true unconditional
distribution of returns (based on the 150-year time series of realized returns) than with
estimating the corresponding risk-neutral distribution (based on 26 years of option price
data).

We have not attempted to optimize our bounds on the cross-sectional dimension, so
that it is likely possible to sharpen the empirical bounds we have derived by expanding the
range of assets under investigation. The finance literature has documented a wide range of
strategies that appear to have attractive Sharpe ratios. It would be interesting to assess
these strategies on the metrics we have suggested, which make sense from the perspective of
investors with constant relative risk aversion; this represents a natural direction for future
research.

Statistical tests of asset pricing models may still be well specified even if SDF variance
is infinite. For example, GMM-based tests of the prediction E(Mt+1Ri,t+1) = 1 require that
var(Mt+1Ri,t+1) is finite.30 This can hold, even with infinite SDF variance, if Ri,t+1 andMt+1

are not perfectly (positively or negatively) correlated.
But our results are problematic for (multifactor) mean–variance analysis, one of the

central frameworks of empirical financial economics. A superficially plausible reaction is
to argue that mean–variance analysis is appropriate so long as the econometrician restricts
attention to assets whose payoffs are “not option-like”. But this is not an adequate solution,
in part because the separation between options and other assets is not a sharp one. A
stock with financial or operational leverage is an option: to quote Black and Scholes (1973),
“almost all corporate liabilities can be viewed as combinations of options.” Moreover, a large
literature has connected meaures of volatility (and hence option prices) to macroeconomic
and financial outcomes.31 To neglect option prices is to miss out an important part of the
story.

More generally, economists who use measures of SDF variability as diagnostics for equilib-
rium models, along the lines proposed by Hansen and Jagannathan (1991), should confront
the fact that SDF moments are unstable, and appear to rise very rapidly, above the first
moment.

30Such tests rest on central limit theorems, so researchers typically require an assumption that
E
[
(Mt+1Ri,t+1)

2+δ
]
is finite for some δ > 0. (Consistency of GMM may still hold if this fails, but standard

errors and conventional test statistics will become invalid.)
31See, for example, Bloom (2009), Bollerslev, Tauchen, and Zhou (2009), Bekaert and Hoerova (2014),

Adrian and Brunnermeier (2016), Martin (2017), Martin and Wagner (2019), and Martin and Shi (2025).
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A Proofs

Proof of equation (5). By the logic of Breeden and Litzenberger (1978), as expressed in the
Carr–Madan formula (Carr and Madan, 2001), for any smooth function g(·), we have

g(R) = g(Rf ) + g′(Rf )(R−Rf ) +

+Rf

∫ 1

0

g′′(KRf )max{KRf −R, 0} dK +

+Rf

∫ ∞
1

g′′(KRf )max{R−KRf , 0} dK.

Let g(R) = Rθ; then we have

Rθ
t+1 = Rθ

f,t+1 + θRθ−1
f,t+1(Rt+1 −Rf,t+1) +

+Rθ−1
f,t+1

∫ 1

0

θ(θ − 1)Kθ−2max{KRf,t+1 −Rt+1, 0} dK +

+Rθ−1
f,t+1

∫ ∞
1

θ(θ − 1)Kθ−2max{Rt+1 −KRf,t+1, 0} dK.

Dividing both sides by Rθ
f,t+1 and taking risk-neutral expectations,

E∗
[
(Rt+1/Rf,t+1)

θ
]
= 1 +

∫ 1

0

θ(θ − 1)Kθ−2 putt(KRf,t+1) dK +

+

∫ ∞
1

θ(θ − 1)Kθ−2 callt(KRf,t+1) dK.

Derivation of the CGF (14). Note that if X is Normally distributed,

logEt expX = EtX +
1

2
vartX. (A1)

It follows that

κt(θ1, θ2) = logEt
[
exp

{
θ1

(
−1

2
λ2 − λZ

)
+ θ2

(
µ− 1

2
σ2 + σW

)}]
= µθ2 +

1

2
λ2θ1(θ1 − 1) +

1

2
σ2θ2(θ2 − 1)− ρσλθ1θ2. (A2)

As κt(1, 1) = 0, we must have µ = ρσλ. Using this fact to eliminate ρ in (A2), we have

κt(θ1, θ2) = µθ2(1− θ1) +
1

2
λ2θ1(θ1 − 1) +

1

2
σ2θ2(θ2 − 1),

as required.
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Derivation of the CGF (17). We seek

κt(θ1, θ2) = logEt
[
exp

{
θ1

(
−1

2
λ2 − λZ − J1ω +N log(1 + J1)

)
+

+ θ2

(
µ− 1

2
σ2 + σW − J2ω +N log(1 + J2)

)}]
.

As N is independent of (W,Z), we can split the expectation to give

κt(θ1, θ2) = logEt
[
exp

{
θ1

(
−1

2
λ2 − λZ − J1ω

)
+ θ2

(
µ− 1

2
σ2 + σW − J2ω

)}]
+

+ logEt
[
exp

{(
θ1 log(1 + J1) + θ2 log(1 + J2)

)
N

}]
. (A3)

The first term on the right-hand side of (A3) can be evaluated using (A1). The second can
be calculated using the fact that if N is Poisson distributed with parameter ω,

logEt exp {θN} = ω
(
eθ − 1

)
. (A4)

We then have

κt(θ1, θ2) = µθ2 − ωJ1θ1 − ωJ2θ2 +
1

2
λ2θ1(θ1 − 1) +

+
1

2
σ2θ2(θ2 − 1)− ρσλθ1θ2 + ω

[
(1 + J1)

θ1(1 + J2)
θ2 − 1

]
. (A5)

Now, κt(1, 1) = 0, so from (A5) we must have µ+ωJ1J2 = ρσλ. Using this fact to substitute
for ρ in (A5),

κt(θ1, θ2) = µθ2(1− θ1) +
1

2
λ2θ1(θ1 − 1) +

1

2
σ2θ2(θ2 − 1) +

+ ω
[
(1 + J1)

θ1 (1 + J2)
θ2 − (1 + J1θ1)(1 + J2θ2)

]
, (A6)

as required.

Derivation of the CGF (21). Recall that the jump arrival rate, ω, is distributed according
to an exponential distribution with mean ω. Thus, N | ω ∼ Poisson(ω) and ω ∼ Exp(1/ω).
The key calculation we require is Et

(
aN
)
, where a > 0 is an arbitrary constant. We have

Et
(
aN
)
= Et

[
Et
(
aN | ω

)]
=

∫ ∞
ω=0

1

ω
e−

ω
ω

∞∑
n=0

e−ωωn

n!
an dω

=

∫ ∞
ω=0

1

ω
e−ω(

1
ω
+1−a) dω

=
1
ω

1
ω
+ 1− a if

1

ω
+ 1− a > 0.
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That is, Et
(
aN
)
= 1/ (1− ω(a− 1)) for a < 1 + 1/ω. This implies that

Et
[
(1 + J1)

θ1N (1 + J2)
θ2N
]
=

1

1− ω
[
(1 + J1)

θ1 (1 + J2)
θ2 − 1

] ,
and the form of the CGF (21) and all other calculations in the example follow.

Derivation of the CGF (25). In the Martin and Papadimitriou (MP, 2022) model, the gross
interest rate is normalized so that Rf,t+1 = 1. We therefore want to find

κt(θ1, θ2) = logEt [exp {θ1 logMt+1 + θ2 logRt+1}] . (A7)

We take the perspective of the median agent (z = 0 in the notation of MP). MP write
today’s date as time 0 and the terminal horizon as time T . In the present paper, we write
today’s date as time t and the terminal horizon as time t + 1, so let us first restate the
relevant results of MP in our notation.

By Result 7 of MP, the market return Rt+1 is lognormally distributed from the perspective
of the median agent, with

Et logRt+1 =
1 + δ

2δ
σ2 and vart logRt+1 = σ2. (A8)

As agents have log utility in the MP model, the SDF perceived by the median agent
is Mt+1 = 1/R

(0)
t+1 where R(0)

t+1 is the return on the median agent’s chosen trading strategy.
(The MP model features complete markets, in which different agents perceive different SDFs
because they have different beliefs, but all see the same prices.) Using Result 9 of MP, this
implies that we can write, in our notation,

Mt+1 =

√
δ

1 + δ
exp

{
−1

2

(1 + δ)2

δ
σ2 +

1

2(1 + δ)σ2

(
logRt+1 −

(1 + δ)(1 + 2δ)

2δ
σ2

)2
}
.

(A9)
By (A8), we can write

logRt+1 =
1 + δ

2δ
σ2 + σZ (A10)

where Z ∼ N(0, 1) is standard Normal. Substituting (A10) into (A9) we find, after some
simplification and rearranging, that

Mt+1 =

√
δ

1 + δ
exp

{
−(1 + δ)

2δ
σ2 − σZ +

1

2(1 + δ)
Z2

}
. (A11)

Substituting equations (A10) and (A11) into equation (A7), it follows that

κt(θ1, θ2) = logEt exp
{
1

2
θ1 log

δ

1 + δ
+ (θ2 − θ1)

1 + δ

2δ
σ2 + (θ2 − θ1)σZ +

θ1
2(1 + δ)

Z2

}
.

(A12)
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We now use the fact that if Z is standard Normal and b, c, and d are constants with
d < 1, then

logEt exp
{
b+ cZ +

1

2
dZ2

}
= b+

1

2

c2

1− d −
1

2
log(1− d). (A13)

Applied to equation (A12), this implies that

κt(θ1, θ2) =
1

2

[
1 + δ

δ
σ2 (θ2 − θ1) +

1 + δ

1 + δ − θ1
σ2 (θ2 − θ1)2 + log

1 + δ

1 + δ − θ1
− θ1 log

1 + δ

δ

]
,

which is equation (25), as required.

Proof of Result 2. (27) is equivalent to inequality (33). The right-hand side of inequality (33)
is the weighted average of two strictly convex functions, and therefore is itself strictly convex.
Moreover, κt(1, y) equals zero when y equals 0 or 1; as it is strictly convex it is therefore
unbounded as y → −∞ or y → ∞. Summarizing, the right-hand side of (33) is a strictly
convex function of y that is unbounded as y tends to plus or minus infinity. It therefore has
a unique interior minimum.

Proof of Result 4. If the investor chooses to invest in the asset with return Rt+1, then the
SDF is proportional to R−γt+1. It follows that Mt+1Rf,t+1 =

R−γ
t+1

EtR−γ
t+1

, so

E∗t log
Rt+1

Rf,t+1

=

Et
[(

Rt+1

Rf,t+1

)−γ
log Rt+1

Rf,t+1

]
Et
[(

Rt+1

Rf,t+1

)−γ] .

The right-hand side of inequality (40) can then be written

sup
y∈R

y

Et
[(

Rt+1

Rf,t+1

)−γ
log Rt+1

Rf,t+1

]
Et
[(

Rt+1

Rf,t+1

)−γ] − logEt
[(

Rt+1

Rf,t+1

)y]
.

The first-order condition associated with the above expression is

Et
[(

Rt+1

Rf,t+1

)−γ
log Rt+1

Rf,t+1

]
Et
[(

Rt+1

Rf,t+1

)−γ] =
Et
[(

Rt+1

Rf,t+1

)y
log Rt+1

Rf,t+1

]
Et
[(

Rt+1

Rf,t+1

)y] ,

which is satisfied when y = −γ, as claimed. Moreover, y is uniquely determined because the
objective function is strictly concave, and so has a unique maximum.
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Similarly, the assumption on the SDF implies that

E∗t
[(

Rt+1

Rf,t+1

)y]
=

Et
[(

Rt+1

Rf,t+1

)y−γ]
Et
[(

Rt+1

Rf,t+1

)−γ]
so the right-hand side of inequality (41) can be written

sup
y∈R

y Et log
Rt+1

Rf,t+1

− logEt

[(
Rt+1

Rf,t+1

)y−γ]
+ logEt

[(
Rt+1

Rf,t+1

)−γ]
.

The first-order condition is

Et log
Rt+1

Rf,t+1

=

Et
[(

Rt+1

Rf,t+1

)y−γ
log Rt+1

Rf,t+1

]
Et
[(

Rt+1

Rf,t+1

)y−γ] ,

and it is satisfied when y = γ, as claimed. Again, y is uniquely determined because the
objective function is strictly concave, so has a unique maximum.

Proof of Result 5. We can find an SDF induced by the optimal strategy of the marginal
investor, Mγ,t+1, defined by

Mγ,t+1Rf,t+1 =

(
Rγ,t+1

Rf,t+1

)−γ
E
[(

Rγ,t+1

Rf,t+1

)1−γ] . (A14)

If the market is incomplete, there may be other SDFs, but Mγ,t+1 is an SDF; and all SDFs
must satisfy Results 1 and 3. We can use equation (A14) to rewrite equation (46) as

gγ =
1

1− γ logE

(Mγ,t+1Rf,t+1)
γ−1
γ E

[(
Rγ,t+1

Rf,t+1

)1−γ
] γ−1

γ

 .
But, using equation (46) once again, this implies that

gγ =
1

1− γ logE
[
(Mγ,t+1Rf,t+1)

γ−1
γ

]
+
γ − 1

γ
gγ,

and hence that
gγ =

γ

1− γ logE
[
(Mγ,t+1Rf,t+1)

γ−1
γ

]
. (A15)

The result follows by Result 1 when γ ∈ (0, 1) or γ > 1, and hence also in the log utility
case by continuity.
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For the final result, rewrite (A15) as

g(τ) =
1

τ − 1
logE

[
(Mγ,t+1Rf,t+1)

1−τ] = 1

τ − 1
κ(1− τ, 0).

It follows that g′(0) = κ(1)(1, 0) = L(1) (Mt+1Rf,t+1), as required.

Proof of Result 6. We begin by introducing a lemma:

Lemma A1. For any random variable X, the function κ(θ) = logE[eθX ] satisfies

lim
θ→−∞

κ(θ)

θ
= ess inf X, lim

θ→∞

κ(θ)

θ
= ess sup X.

Proof. To prove the lemma, let L = ess sup X. As X ≤ L with probability one, κ(θ) ≤ θL

for all θ > 0, that is, lim supθ→∞ κ(θ)/θ ≤ L.

Now consider sets An = {L− 1/n < X ≤ L}, n = 1, 2, . . ., as P(An) > 0 for any n,

κ(θ)

θ
≥ log

{
E[eθX | X ∈ An]× P(An)

}
θ

≥ L− 1

n
+

logP(An)
θ

, ∀n = 1, 2, . . . .

Thus, lim infθ→∞ κ(θ)/θ ≥ lim supn→∞ lim infθ→∞{L− 1/n + logP(An)/θ} = L. Combining
the two limiting statements for κ(θ)/θ, limθ→∞ κ(θ)/θ = L.

The case for θ → −∞ follows immediately by applying the same arguments to −X.

It follows that in finite samples, the estimated true and risk-neutral CGFs will be asymp-
totically linear. More precisely, as |θ| → ∞, we have

lim
θ→−∞

κ̂(0, θ)

θ
= logmin

t

Rt+1

Rf,t+1

and lim
θ→+∞

κ̂(0, θ)

θ
= logmax

t

Rt+1

Rf,t+1

, (A16)

in a finite sample of returns {Rt+1/Rf,t+1}t=1,...,T . To see this, consider a random variable X
whose distribution follows the empirical measure 1

T

∑T−1
t=0 δXt where Xt = log(Rt+1/Rf,t+1),

so that by the definition (49), κ̂(0, θ) = logE[eθX ]. Equation (A16) follows from Lemma A1.
Similarly, given a finite collection of strikes, where Kmin,t and Kmax,t denote the smallest

and largest strikes observed for out-of-the-money puts and calls at time t, we have

lim
θ→−∞

κ̂(1, θ)

θ
= logmin

t

Kmin,t

Rf,t+1

and lim
θ→+∞

κ̂(1, θ)

θ
= logmax

t

Kmax,t

Rf,t+1

. (A17)

(Note that K here indicates a strike expressed as a return, consistent with our notation
in equation (5), i.e., the strike of an option on the asset divided by the spot price of the
underlying asset.) This follows because we can write κ̂(1, θ) = log

∫
eθx q(dx), where the
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probability measure q(·) = 1
T

∑T
t=1 qt(·), and qt denotes the conditional risk-neutral distri-

bution of log(Rt+1/Rf,t+1). The claim follows from Lemma A1 because qt only has nonzero
probability density in [log(Kmin,t/Rf,t+1), log(Kmax,t/Rf,t+1)].

Now we are in a position to prove the result. Rewrite inequality (51) as

κ(θ, 0)

θ
≥
[
κ̂(1, y)

y
−

κ̂(0, θ
θ−1y)
θ
θ−1y

]
y. (A18)

If condition (i) holds, then we can take the limit as y → −∞: the term in the square
brackets tends to logmintKmin,t − logmintRt+1, which is negative, so that the right-hand
side of (A18) diverges to +∞. If condition (ii) holds, then we can take the limit as y →∞:
in this case the term in square brackets tends to logmaxtKmax,t − logmaxtRt+1, which is
positive, so that the right-hand side of (A18) diverges to +∞ once again. It follows that
κ(θ, 0)/θ can be made arbitrarily large, and hence that κ(θ, 0) can be made arbitrarily large,
because θ is fixed and positive.
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B Additional Tables and Figures

Table A1: Summary of the option sample

This table summarizes the number of observed SPX option contracts covering January 1996 through De-
cember 2022. For each filter applied, we report the fraction of contracts that are deleted and the number of
contracts that remain.

DTM≤ 30 30 <DTM≤ 182 DTM> 182

deleted (%) remaining deleted (%) remaining deleted (%) remaining

Initial sample 4,384,236 4,261,474 911,732
Call 1,740,265 1,601,206 361,198
Put 2,643,971 2,660,268 550,534

DTM≥ 8 26.34% 3,229,180 0.00% 4,261,474 0.00% 911,732
no missing Rf 0.01% 3,228,757 0.03% 4,259,831 0.06% 911,188

implied vol. exists 1.49% 3,180,755 0.54% 4,236,609 0.71% 904,701
no duplication 6.63% 2,969,538 11.32% 3,757,977 0.55% 899,743

last traded today 0.01% 2,969,124 0.03% 3,756,786 0.07% 899,109
OI > 0 4.76% 2,827,852 6.68% 3,505,516 2.81% 873,848

offer > bid > 0 0.00% 2,827,844 0.00% 3,505,516 0.00% 873,844
out-of-the-money 24.21% 2,142,995 20.08% 2,801,297 21.40% 686,821

Final sample 2,142,995 2,801,297 686,821
Call 697,503 893,373 227,741
Put 1,445,492 1,907,924 459,080

−6 ≤ m ≤ 3 11.72% 1,891,835 6.19% 2,628,005 2.94% 666,616

m-filtered sample 1,891,835 2,628,005 666,616
Call 683,447 889,902 227,553
Put 1,208,388 173,8103 439,063
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Table A2: Contracts used for constructing constant-maturity risk-neutral CGFs

This table summarizes the SPX option contracts used to construct the risk-neutral CGFs at constant matu-
rities (or, equivalently, the return horizons) of τ = 1, 2, 3, 4, 5, 6, 9, 12 months (Column 2 gives the calendar
days).
At date t, for a target maturity τ , we identify the near-term (T1) and the next-term expiry (T2) from our
filtered options sample. We then compute the corresponding risk-neutral CGFs, κ(T1)

t (1, θ) and κ
(T2)
t (1, θ),

using equation (5). The CGF at the target maturity τ is then obtain by linearly interpolating in calendar
time:

κ
(τ)
t (1, θ) =

T2 − τ
T2 − T2

κ
(T1)
t (1, θ) +

τ − T1
T2 − T2

κ
(T2)
t (1, θ).

Column 1 reports the number of days between January 6, 1996, and December 30, 2022, for which enough
options contracts pass our filter to construct both κ

(T1)
t (1, θ) and κ

(T2)
t (1, θ), and thus κ(τ)

t (1, θ). Columns 3
and 4 report the average values of T1 and T2. Column 5 gives the number of month-end dates with κ

(τ)
t (1, θ).

num. obs. τ in cal. days avg. T1 avg. T2 num. months

5,856 30 23 42 324
6,106 60 49 74 324
5,640 91 77 115 323
5,063 122 99 152 321
4,308 152 120 182 315
3,589 182 148 217 314
2,476 273 234 305 294
1,511 365 325 431 250
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Table A3: Comparing the dollar trading volumes of options and stocks: summary statistics

Every day, for each SPX option, we compute two measures. The first measure is the dollar volume, defined
as DV = 100S0×V × |∆|, where S0 is the current price of the S&P 500 index, V is the number of contracts
traded, and ∆ is the option delta. (Note that SPX options use a 100 contract multiplier.) The second
measure is the adjusted moneyness, calculated as

m =
log(K/F (τ))√

τσ2
ATM

,

where τ is the annualized time to maturity, K is the strike price, F (τ) is the maturity-matched forward
price, and σATM is the at-the-money implied volatility for that maturity on the same day.
In Panels (a) and (b), we show the average of log10(DV ) for all contracts in our sample from January 4, 1996
to December 30, 2022, grouped by different adjusted moneyness ranges. In comparison, Panel (c) presents
the average daily dollar trading volumes of stocks, divided into ten portfolios sorted by size based on NYSE
market capitalization.

(a) Out-of-the-money puts

m mean med. min q25 q75 max

(−∞,−7) 5.26 5.42 2.91 5.07 5.61 7.26

[−7,−6) 5.48 5.63 2.90 5.20 5.86 7.30

[−6,−5) 5.66 5.80 4.25 5.38 6.00 6.66

[−5,−4) 5.94 6.03 4.52 5.66 6.25 6.77

[−4,−3) 6.32 6.39 5.27 6.06 6.57 7.24

[−3,−2) 6.72 6.77 5.88 6.49 6.94 7.32

[−2,−1) 7.17 7.19 6.53 6.98 7.38 7.73

[−1, 0) 7.65 7.64 7.07 7.45 7.88 8.25

(b) Out-of-the-money calls

m mean med. min q25 q75 max

[4,+∞) 5.68 5.75 3.11 5.45 6.03 7.30

[3, 4) 5.57 5.65 3.57 5.40 5.89 7.52

[2, 3) 5.88 5.92 3.78 5.72 6.08 7.03

[1, 2) 6.73 6.72 6.10 6.61 6.85 7.47

[0, 1) 7.59 7.57 7.11 7.44 7.73 8.18

(c) Fama-French portfolios

size mean med. min q25 q75 max

1 5.77 5.83 4.82 5.56 5.99 7.04

2 6.46 6.54 5.62 6.21 6.68 7.75

3 6.77 6.87 6.04 6.51 6.98 7.59

4 7.00 7.12 6.31 6.76 7.22 7.57

5 7.20 7.31 6.51 6.95 7.43 7.71

6 7.36 7.46 6.70 7.11 7.58 7.86

7 7.54 7.63 6.85 7.32 7.75 8.06

8 7.78 7.86 7.09 7.58 7.97 8.29

9 8.03 8.11 7.29 7.85 8.23 8.52

10 8.56 8.62 7.74 8.36 8.73 9.15
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Table A4: Upper bounds for logE[(MRf )
1/2]

This table reports the upper bounds for κ(1/2, 0) = logE[(MRf )1/2]. The estimation uses monthly US
stock-market returns and month-end SPX option prices. The row “JKKST annual” in Panel (b) uses the
annual realized return series from 1872–2020 in Jordà et al. (2019). The options data cover 1996 through
2022 for all specifications. The one-month estimates in Panel (a) are annualized by multiplying by twelve.
Column 3 reports the 95% confidence intervals using a block bootstrap with block length equal to the return
horizon, resampling both series separately. Column 4 (E-bootstrap) resamples only the realized returns used
for estimating κ̂(0, θ) in equation (49). Column 5 (E-bootstrap) resamples only the risk-neutral conditional
CGFs used for estimating κ̂(1, θ) in equation (50).

By Result 5, we can convert the figures in the second column of the table into lower bounds on the WTP of
an investor with γ = 2 by multiplying them by −2.

sample est. bootstrap CI E-bootstrap CI E∗-bootstrap CI

(a) one-month horizon

1872-2022 −0.018 (−0.036,−0.007) (−0.035,−0.007) (−0.018,−0.018)

1946-2022 −0.029 (−0.057,−0.012) (−0.057,−0.012) (−0.030,−0.029)

1996-2022 −0.029 (−0.081,−0.003) (−0.081,−0.003) (−0.029,−0.029)

(b) one-year horizon

1872-2022 −0.015 (−0.029,−0.006) (−0.029,−0.006) (−0.016,−0.015)

1946-2022 −0.026 (−0.052,−0.011) (−0.051,−0.011) (−0.026,−0.025)

1996-2022 −0.025 (−0.084,−0.003) (−0.083,−0.003) (−0.026,−0.025)

JKKST annual −0.015 (−0.033,−0.005) (−0.033,−0.005) (−0.015,−0.015)
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(a) OOM puts (b) OOM calls

0 K0 K1 K2 K3 K4

strike

op
tio

n
pr

ic
e

bid price obs.
offer price obs.

K4 K3 K2 K1 K0

strike
op

tio
n

pr
ic

e

bid price obs.
offer price obs.

Figure A1: Conservative extrapolation of option prices in Section 4.1.
In these illustrations, we plot increasing out-of-the-money put and call prices at strikes K1,K2,K3,K4, . . .,
marked by blue (bid) and red (offer) dots. We apply linear interpolation between observed strikes, and treat
bid and offer price extrapolations separately as follows.
Bid prices. When constructing risk-neutral CGFs from bid prices, we aim to find the lowest arbitrage-free
prices. Consider two strikes K1 < K2 with observed bid-offer quotes for OOM puts, as shown in Panel (a).
To rule out butterfly arbitrage, the cost of buying K2−K1

K2−K0
K0-puts plus K1−K0

K2−K0
K2-puts must be no less than

the proceeds from shorting one put at K1. Solving this inequality yields a unique maximum arbitrage-free
strike K0 such that put(K0) = 0. A similar argument yields K0 for calls in Panel (b).
Offer prices. When constructing risk-neutral CGFs from offer prices, we use the highest possible prices to
remain conservative. For OOM puts in Panel (a), since put(0) = 0, linear extrapolation from the lowest
observed offer price at K1 to the origin gives the highest possible extrapolated prices by a standard convexity
argument (the function put(K) must be convex in K). As putt(KRf,t+1) is then linear in K for K close to
zero, θ(θ − 1)

∫ 1

0
Kθ−2 putt(KRf,t+1) dK in equation (5) will diverge when θ < 0. For OOM calls, in Panel

(b), the most conservative extrapolation holds the offer prices constant at and above the highest observed
strike K1. As a result, with callt(KRf,t+1) constant for large K, θ(θ − 1)

∫∞
1
Kθ−2 callt(KRf,t+1) dK in

equation (5) will diverge when θ > 1.
To summarize, when we extrapolate offer prices in this maximally conservative way, the “offer” risk-neutral
CGF κt(1, θ) becomes infinite for θ /∈ [0, 1].
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Realized return sample: 1872–2022 Realized return sample: 1946–2022
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Figure A2: Convexity bounds for the moments of the SDF: one-year horizon.

Realized return sample: 1872–2022 Realized return sample: 1946–2022
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Figure A3: Moment bounds calculated using mid-market option prices, extrapolating using
a flat volatility smile.
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Figure A4: Moment bounds are well-behaved for θ ∈ (0, 1) and for the two entropy bounds.
This figure shows bounds on the θ = 1/2 moment of the SDF and on the two entropy measures as a function

of y, across different horizons. All curves are annualized. The points on the curves represent the optimizing

values of y (which, in the left and right panels, supplies the risk aversion measure described in Result 4).

Realized return sample: 1872–2022 Realized return sample: 1946–2022
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Figure A5: Convexity bounds for the moments of the SDF: no extrapolation outside the
range of observed option strikes.
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Realized return sample: 1872–2022 Realized return sample: 1946–2022
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Figure A6: Convexity bounds for the moments of the SDF: using daily observations of
option prices and realized returns.

Realized return sample: 1872–2022 Realized return sample: 1946–2022
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Figure A7: Convexity bounds for the moments of the SDF: option sample starting March
6, 2008.
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Realized return sample: 1872–2022 Realized return sample: 1946–2022
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Figure A8: Convexity bounds for the moments of the SDF and their optimizing values based
on the most conservative approach to extrapolating option offer prices.
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Realized return sample: 1872–2022 Realized return sample: 1946–2022
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Figure A9: Convexity bounds for the moments of the SDF: moneyness filter −6 ≤ m ≤ 3

applied to the option sample.
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(a) Out-of-the-money puts
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(b) Out-of-the-money calls
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Figure A10: Comparing the dollar trading volumes of options and stocks: time-series pat-
terns

This plot displays the average daily dollar trading volumes for SPX options by month and moneyness groups.

Blue lines represent puts, while red lines represent calls. Additionally, two black lines show the average daily

dollar trading volumes for stocks, one for the top decile (the largest companies) and one for the bottom

decile (the smallest companies) of a size-sorted portfolio.
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